IMPORTANT NOTICES AND DISCLAIMERS CONCERNING NFPA® STANDARDS

NOTICE AND DISCLAIMER OF LIABILITY CONCERNING THE USE OF NFPA STANDARDS

NFPA® codes, standards, recommended practices, and guides ("NFPA Standards"), of which the document contained herein is one, are developed through a consensus standards development process approved by the American National Standards Institute. This process brings together volunteers representing varied viewpoints and interests to achieve consensus on fire and other safety issues. While the NFPA administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in NFPA Standards.

The NFPA disclaims liability for any personal injury, property, or other damages of any nature whatsoever, whether special, indirect, consequential or compensatory, directly or indirectly resulting from the publication, use of, or reliance on NFPA Standards. The NFPA also makes no guaranty or warranty as to the accuracy or completeness of any information published herein.

In issuing and making NFPA Standards available, the NFPA is not undertaking to render professional or other services for or on behalf of any person or entity. Nor is the NFPA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances.

The NFPA has no power, nor does it undertake, to police or enforce compliance with the contents of NFPA Standards. Nor does the NFPA list, certify, test, or inspect products, designs, or installations for compliance with this document. Any certification or other statement of compliance with the requirements of this document shall not be attributable to the NFPA and is solely the responsibility of the certifier or maker of the statement.

REVISION SYMBOLS IDENTIFYING CHANGES FROM THE PREVIOUS EDITION

Text revisions are shaded. A Δ before a section number indicates that words within that section were deleted and a Δ to the left of a table or figure number indicates a revision to an existing table or figure. When a chapter was heavily revised, the entire chapter is marked throughout with the Δ symbol. Where one or more sections were deleted, a • is placed between the remaining sections. Chapters, annexes, sections, figures, and tables that are new are indicated with an N.

Note that these indicators are a guide. Rearrangement of sections may not be captured in the markup, but users can view complete revision details in the First and Second Draft Reports located in the archived revision information section of each code at www.nfpa.org/docinfo. Any subsequent changes from the NFPA Technical Meeting, Tentative Interim Amendments, and Errata are also located there.

REMINDER: UPDATING OF NFPA STANDARDS

Users of NFPA codes, standards, recommended practices, and guides ("NFPA Standards") should be aware that NFPA Standards may be amended from time to time through the issuance of a Tentative Interim Amendment (TIA) or corrected by Errata. An official NFPA Standard at any point in time consists of the current edition of the document together with any TIAs and Errata then in effect.

To determine whether an NFPA Standard has been amended through the issuance of Tentative Interim Amendments or corrected by Errata, go to www.nfpa.org/docinfo to choose from the list of NFPA Standards or use the search feature to select the NFPA Standard number (e.g., NFPA 13). The document information page provides up-to-date document-specific information as well as postings of all existing TIAs and Errata. It also includes the option to register for an “Alert” feature to receive an automatic email notification when new updates and other information are posted regarding the document.
IMPORTANT NOTICES AND DISCLAIMERS CONCERNING NFPA® STANDARDS

ADDITIONAL NOTICES AND DISCLAIMERS

Updating of NFPA Standards

Users of NFPA codes, standards, recommended practices, and guides ("NFPA Standards") should be aware that these documents may be superseded at any time by the issuance of new editions or may be amended from time to time through the issuance of Tentative Interim Amendments or corrected by Errata. An official NFPA Standard at any point in time consists of the current edition of the document together with any Tentative Interim Amendments and any Errata then in effect. In order to determine whether a given document is the current edition and whether it has been amended through the issuance of Tentative Interim Amendments or corrected through the issuance of Errata, consult appropriate NFPA publications such as the National Fire Codes® Subscription Service, visit the NFPA website at www.nfpa.org, or contact the NFPA at the address listed below.

Interpretations of NFPA Standards

A statement, written or oral, that is not processed in accordance with Section 6 of the Regulations Governing the Development of NFPA Standards shall not be considered the official position of NFPA or any of its Committees and shall not be considered to be, nor be relied upon as, a Formal Interpretation.

Patents

The NFPA does not take any position with respect to the validity of any patent rights referenced in, related to, or asserted in connection with an NFPA Standard. The users of NFPA Standards bear the sole responsibility for determining the validity of any such patent rights, as well as the risk of infringement of such rights, and the NFPA disclaims liability for the infringement of any patent resulting from the use of or reliance on NFPA Standards.

NFPA adheres to the policy of the American National Standards Institute (ANSI) regarding the inclusion of patents in American National Standards ("the ANSI Patent Policy"), and hereby gives the following notice pursuant to that policy:

NOTICE: The user’s attention is called to the possibility that compliance with an NFPA Standard may require use of an invention covered by patent rights. NFPA takes no position as to the validity of any such patent rights or as to whether such patent rights constitute or include essential patent claims under the ANSI Patent Policy. If, in connection with the ANSI Patent Policy, a patent holder has filed a statement of willingness to grant licenses under these rights on reasonable and nondiscriminatory terms and conditions to applicants desiring to obtain such a license, copies of such filed statements can be obtained, on request, from NFPA. For further information, contact the NFPA at the address listed below.

Law and Regulations

Users of NFPA Standards should consult applicable federal, state, and local laws and regulations. NFPA does not, by the publication of its codes, standards, recommended practices, and guides, intend to urge action that is not in compliance with applicable laws, and these documents may not be construed as doing so.

Copyrights

NFPA Standards are copyrighted. They are made available for a wide variety of both public and private uses. These include both use, by reference, in laws and regulations, and use in private self-regulation, standardization, and the promotion of safe practices and methods. By making these documents available for use and adoption by public authorities and private users, the NFPA does not waive any rights in copyright to these documents.

Use of NFPA Standards for regulatory purposes should be accomplished through adoption by reference. The term “adoption by reference” means the citing of title, edition, and publishing information only. Any deletions, additions, and changes desired by the adopting authority should be noted separately in the adopting instrument. In order to assist NFPA in following the uses made of its documents, adopting authorities are requested to notify the NFPA (Attention: Secretary, Standards Council) in writing of such use. For technical assistance and questions concerning adoption of NFPA Standards, contact NFPA at the address below.

For Further Information

All questions or other communications relating to NFPA Standards and all requests for information on NFPA procedures governing its codes and standards development process, including information on the procedures for requesting Formal Interpretations, for proposing Tentative Interim Amendments, and for proposing revisions to NFPA standards during regular revision cycles, should be sent to NFPA headquarters, addressed to the attention of the Secretary, Standards Council, NFPA, 1 Batterymarch Park, P.O. Box 9101, Quincy, MA 02269-9101; email: stds_admin@nfpa.org.

For more information about NFPA, visit the NFPA website at www.nfpa.org. All NFPA codes and standards can be viewed at no cost at www.nfpa.org/docinfo.
NFPA® 274

Standard

Test Method to Evaluate Fire Performance Characteristics of Pipe Insulation

2018 Edition

This edition of NFPA 274, Test Method to Evaluate Fire Performance Characteristics of Pipe Insulation, was prepared by the Technical Committee on Fire Tests. It was issued by the Standards Council on November 10, 2017, with an effective date of November 30, 2017, and supersedes all previous editions.

This edition of NFPA 274 was approved as an American National Standard on November 30, 2017.

Origin and Development of NFPA 274

NFPA 274, Test Method to Evaluate Fire Performance Characteristics of Pipe Insulation, was developed by the Technical Committee on Fire Tests to fill the need for a standard method of determining the fire performance of pipe insulation materials. Other codes and standards have identified the issue of the installation of such materials in air-handling plenums. Although NFPA 274 does not prescribe pass/fail criteria, suggested acceptance criteria are provided in Annex B for consideration by the other referencing codes and standards.

The 2009 edition included a new requirement for a quantifiable determination of the presence of flames at the top of the exhaust chase using thermocouples.

The 2013 edition is a reconfirmation of the previous edition.

The 2018 edition includes updates to the latest referenced codes and standards.
Technical Committee on Fire Tests

Barry L. Badders, Jr., Chair
Intertek Testing Services, TX [RT]

James Andrew Lynch, The Fire Solutions Group, PA [SE]
John Martell, Professional Fire Fighters of Maine/IAFF, ME [L]
Rodney A. McPhee, Canadian Wood Council, Canada [M]
Kathleen A. Newman, Fitecet, CA [M]
Arthur J. Parker, JENSEN HUGHES, MD [SE]
Michael L. Savage, Sr., City of Rio Rancho, NM [E]
Michael Schmeida, Gypsum Association, OH [M]
David T. Sheppard, U.S. Bureau of Alcohol, Tobacco, Firearms & Explosives, MD [RT]
Dwayne E. Sloan, UL LLC, NC [RT]
Stanislav I. Stoliarov, University of Maryland, MD [SE]
Kuma Sumathipala, American Wood Council, VA [M]
Dong Zeng, FM Global, MA [I]
Rep. FM Global

Alternates

Karl Dana Houser, Intertek, PA [RT]
(Alt. to Barry L. Badders, Jr.)
Marc L. Janssens, Southwest Research Institute, TX [RT]
(Alt. to Karen C Carpenter)
Ineke van Zeeland, Canadian Wood Council, Canada [M]
(Alt. to Rodney A. McPhee)
Matthew T. Vinci, International Association of Fire Fighters, DC [L]
(Alt. to John Martell)
Robert J. Wills, American Iron and Steel Institute, AL [M]
(Alt. to Farid Alfawakhiri)
Luke C. Woods, UL LLC, MA [RT]
(Alt. to Dwayne E. Sloan)
Joe Ziolkowski, American Furniture Manufacturers Association, NC [M]
(Voting Alternate)

Nonvoting

Andrew Lock, U.S. Consumer Product Safety Commission, MD [C]

Robert H. Barker, American Fiber Manufacturers Association, VA [M]
Rep. American Fiber Manufacturers Association
Robbi Khanna, U.S. Consumer Product Safety Commission, MD [C]

Tracy L. Vecchiarelli, NFPA Staff Liaison

This list represents the membership at the time the Committee was balloted on the final text of this edition. Since that time, changes in the membership may have occurred. A key to classifications is found at the back of the document.

NOTE: Membership on a committee shall not in and of itself constitute an endorsement of the Association or any document developed by the committee on which the member serves.

Committee Scope: This Committee shall have primary responsibility for documents on fire testing procedures, for reviewing existing fire test standards and recommending appropriate action to NFPA, for recommending the application of and advising on the interpretation of acceptable test standards for fire problems of concern to NFPA technical committees and members, and for acting in a liaison capacity between NFPA and the committees of other organizations writing fire test standards. This Committee does not cover fire tests that are used to evaluate extinguishing agents, devices, or systems.
Contents

Chapter 1 Administration ... 274–4
 1.1 Scope. ... 274–4
 1.2 Purpose. ... 274–4
 1.3 Application. ... 274–4
 1.4 Units and Formulas. .. 274–4

Chapter 2 Referenced Publications 274–4
 2.1 General. ... 274–4
 2.2 NFPA Publications. (Reserved) 274–4
 2.3 Other Publications. .. 274–4
 2.4 References for Extracts in Mandatory Sections. (Reserved) 274–5

Chapter 3 Definitions .. 274–5
 3.1 General. ... 274–5
 3.2 NFPA Official Definitions. 274–5
 3.3 General Definitions. (Reserved) 274–5

Chapter 4 Test Specimens ... 274–5
 4.1 Size and Preparation. .. 274–5
 4.2 Conditioning. ... 274–5

Chapter 5 Test Equipment and Instrumentation 274–5
 5.1 Pipe Chase. .. 274–5
 5.2 Ignition Source. .. 274–6
 5.3 Canopy Hood and Exhaust Duct. 274–7
 5.4 Instrumentation in Exhaust Duct. 274–7
 5.5 Sampling Line. ... 274–8
 5.6 Gas Sampling and Analysis Equipment. 274–8
 5.7 Smoke Density Measuring Instruments. 274–8
 5.8 Data Acquisition. ... 274–8
 5.9 Photographic Equipment. 274–9

Chapter 6 Calibration ... 274–9
 6.1 Calibration of Equipment. 274–9
 6.2 Daily Calibration. ... 274–9

Chapter 7 Test Procedure .. 274–9
 7.1 Testing Procedure. .. 274–9

Chapter 8 Calculations .. 274–10
 8.1 Method of Calculation. .. 274–10
 8.2 Symbols. ... 274–10
 8.3 Calibration Constant Using Propane. 274–10
 8.4 Heat Release for Test Specimens. 274–10
 8.5 Smoke Obscuration. .. 274–10

Chapter 9 Report of Results .. 274–11
 9.1 Documentation. ... 274–11

Annex A Explanatory Material 274–11

Annex B Commentary .. 274–11

Annex C Heat Release Calculations Using Additional Gas Analysis ... 274–12

Annex D Informational References 274–13

Index ... 274–14
NFPA 274
Standard

Test Method to Evaluate Fire Performance Characteristics of Pipe Insulation

2018 Edition

IMPORTANT NOTE: This NFPA document is made available for use subject to important notices and legal disclaimers. These notices and disclaimers appear in all publications containing this document and may be found under the heading “Important Notices and Disclaimers Concerning NFPA Standards.” They can also be viewed at www.nfpa.org/disclaimers or obtained on request from NFPA.

UPDATES, ALERTS, AND FUTURE EDITIONS: New editions of NFPA codes, standards, recommended practices, and guides (i.e., NFPA Standards) are released on scheduled revision cycles. This edition may be superseded by a later one, or it may be amended outside of its scheduled revision cycle through the issuance of Tentative Interim Amendments (TIAs). An official NFPA Standard at any point in time consists of the current edition of the document, together with all TIAs and Errata in effect. To verify that this document is the current edition or to determine if it has been amended by TIAs or Errata, please consult the National Fire Codes® Subscription Service or the “List of NFPA Codes & Standards” at www.nfpa.org/docinfo. In addition to TIAs and Errata, the document information pages also include the option to sign up for alerts for individual documents and to be involved in the development of the next edition.

NOTICE: An asterisk (*) following the number or letter designating a paragraph indicates that explanatory material on the paragraph can be found in Annex A.

A reference in brackets [] following a section or paragraph indicates material that has been extracted from another NFPA document. As an aid to the user, the complete title and edition of the source documents for extracts in mandatory sections of the document are given in Chapter 2 and those for extracts in informational sections are given in Annex D. Extracted text may be edited for consistency and style and may include the revision of internal paragraph references and other references as appropriate. Requests for interpretations or revisions of extracted text shall be sent to the technical committee responsible for the source document.

Information on referenced publications can be found in Chapter 2 and Annex D.

Chapter 1 Administration

1.1 Scope. This standard describes a test method for determining the heat release and the smoke generation of pipe insulation assemblies mounted on steel pipes in a full-scale pipe chase.

1.2 Purpose.

1.2.1 This is a test method for an examination of the complete insulation assembly, including elbows, in an actual configuration that is found in the end use application. This test method shall be used to ascertain the resulting fire performance characteristics of the insulation assembly when exposed to a standard flaming ignition source in a standard pipe chase.

1.2.2 The results from this procedure provide information that shall be permitted to be used as an aid in the selection of pipe insulation assemblies that provide less contribution of heat, flame, and smoke to fire scenarios. The configuration and flame exposure that the specimens incur during the test produce results that clearly differentiate between products.

1.3 Application.

1.3.1 This test procedure shall be used to determine performance of pipe insulation assemblies exposed to a flaming ignition source.

1.3.2 The specimens shall include any jackets, elbows, tapes, sealants, coatings, adhesives, or other accessories used with the insulation in practice.

1.3.3 The test shall determine the potential extent to which the pipe insulation assemblies contribute to fire growth and the potential for fire spread under the particular conditions simulated.

1.3.4 Full-size specimens of pipe insulation assemblies shall be enclosed in a pipe chase and exposed to a gas burner ignition source.

1.3.5 During the test, the gas burner shall be set at an output level of 20 kW for the first 3 minutes and subsequently 70 kW for an additional 7 minutes.

1.3.6 Measurements shall be made of heat release and smoke density.

1.3.7 The total heat released, the peak rate of heat release, and the total smoke released shall be determined from the heat release and smoke density measurements, respectively.

1.3.8 Observations shall be taken during the test of flame spread out the top of the chase and other visual events.

1.3.9 Post-test observations of the condition of the specimens shall be recorded.

1.4 Units and Formulas.

1.4.1 SI Units. Metric units of measurement in this standard are in accordance with the modernized metric system known as the International System of Units (SI).

1.4.2 Primary Values. The SI value for a measurement and the equivalent inch-pound value given in parentheses shall each be acceptable for use as primary units for satisfying the requirements of this standard.

Chapter 2 Referenced Publications

2.1 General. The documents or portions thereof listed in this chapter are referenced within this standard and shall be considered part of the requirements of this document.

2.2 NFPA Publications. (Reserved)

2.3 Other Publications.

Chapter 3 Definitions

3.1 General. The definitions contained in this chapter shall apply to the terms used in this standard. Where terms are not defined in this chapter or within another chapter, they shall be defined using their ordinarily accepted meanings within the context in which they are used. Merriam-Webster’s Collegiate Dictionary, 11th edition, shall be the source for the ordinarily accepted meaning.

3.2 NFPA Official Definitions.

3.2.1 Shall. Indicates a mandatory requirement.

3.2.2 Should. Indicates a recommendation or that which is advised but not required.

3.2.3 Standard. An NFPA Standard, the main text of which contains only mandatory provisions using the word “shall” to indicate requirements and that is in a form generally suitable for mandatory reference by another standard or code or for adoption into law. Nonmandatory provisions are not to be considered a part of the requirements of a standard and shall be located in an appendix, annex, footnote, informational note, or other means as permitted in the NFPA Manuals of Style. When used in a generic sense, such as in the phrase “standards development process” or “standards development activities,” the term “standards” includes all NFPA Standards, including Codes, Standards, Recommended Practices, and Guides.

3.3 General Definitions. (Reserved)

Chapter 4 Test Specimens

4.1 Size and Preparation.

4.1.1 The test specimen shall consist of the actual pipe insulation assemblies, including elbows, jackets, lagging, tapes, sealants, coatings, and adhesives, mounted on three DN 60 metric size or 2 in. nominal pipe size steel pipes.

4.1.2 The three steel pipes shall be L shaped, each with a vertical and horizontal section joined (by welding) with a short radius welded elbow of the same diameter.

4.1.2.1 The horizontal section of the welded pipe, including the elbow, shall be 1120 mm ± 13 mm (44 in. ± ½ in.) long, and the vertical section, including the elbow, shall be 1650 mm ± 13 mm (65 in. ± ½ in.).

4.1.2.2 Each pipe shall have a cap screwed to the end of the vertical run, the cap having a hole through which a threaded eyebolt has been fastened. The ends of the horizontal run of pipes shall not be capped.

4.1.2.3 The eyebolt shall be opened to form a hook so that the pipe can be hung on the rod across the top of the chase.

4.1.3 The L-shaped steel pipes shall be covered with insulation assemblies.

4.1.3.1 The vertical section of the insulation assembly shall be a minimum of 1520 mm (60 in.) from its top to the top of the horizontal section of the assembly.

4.1.3.2 The horizontal section shall be a minimum of 760 mm (30 in.) from the front of the chase to the vertical section.

4.1.3.3 As an alternative to 4.1.3.1 and 4.1.3.2, the vertical section of the insulation assembly shall be a minimum of 1525 mm (60 in.), and the horizontal section shall be a minimum of 760 mm (30 in.) in addition to the elbow or miter at the elbow.

4.1.4 The pipes shall be positioned in the chase with the middle pipe centered in the width of the chase and the three pipes 165 mm ± 3 mm (6½ in. ± ¼ in.) apart, measured centerline to centerline.

4.1.4.1 The pipes shall be centered front to back in the vertical portion of the chase and their horizontal centerline 150 mm ± 13 mm (6 in. ± ½ in.) below the top of the horizontal portion of the interior of the chase.

4.2 Conditioning.

4.2.1 The test specimen shall be conditioned for at least 48 hours prior to testing at 23°C ± 3°C (73°F ± 5°F) and at relative humidity of 50 percent ± 5 percent.

4.2.2 Test specimens shall be tested within 20 minutes of removal from such conditions if the test conditions differ from those specified in this section.

Chapter 5 Test Equipment and Instrumentation

5.1 Pipe Chase.

5.1.1 The chase shall be made of 1.37 mm [0.054 in. (16 gauge)] steel lined with nominal 13 mm (0.5 in.) thick calcium silicate board and stiffened with angle or bar stock.

5.1.2 The overall height inside the chase shall be 2030 mm ± 13 mm (80 in. ± ½ in.), and the width shall be 610 mm ± 13 mm (24 in. ± ½ in.), as shown in Figure 5.1.2.

5.1.3 The vertical section shall be 460 mm ± 13 mm (18 in. ± ½ in.) deep, while the horizontal section shall be 460 mm ± 13 mm (18 in. ± ½ in.) high and 1220 mm ± 13 mm (48 in. ± ½ in.) deep, as shown in Figure 5.1.2.

5.1.4 Specimens mounted on steel pipes shall be hung from a 27 mm (1¼ in.) diameter steel rod centered across the top of the vertical chase.

5.1.5 A pan to capture any dripping and falling materials shall be made to fit in the bottom of the chase.

5.1.6 The pan shall be made of tinned steel flashing material 710 mm (28 in.) wide and 1220 mm (48 in.) long.

5.1.7 Approximately 51 mm (2 in.) of either side of the 1220 mm (48 in.) length and one end shall be bent 90 degrees to form the sides of the pan that will fit into the bottom of the chase.

5.1.8 The open side of the pan shall face outward.

5.1.9 Heavy metal tape shall be used to cover any gaps between the pan and the walls of the chase.

5.1.10 The pan shall be replaced following any test after which material adheres to the pan.
5.1.11 Three Type K 1 mm (1/16 in.) diameter ungrounded inconel-sheathed thermocouples shall be located 305 mm ± 6 mm (12 in. ± 1/4 in.) above the top of the chase. The thermocouples shall be 230 mm ± 6 mm (9 in. ± 1/4 in.) from the back wall of the chase and equally spaced across the interior width of the chase.

5.2 Ignition Source.

5.2.1 The ignition source for the test shall be a gas burner with nominal dimensions of 305 mm × 305 mm × 152 mm (12 in. × 12 in. × 6 in.), as shown in Figure 5.2.1.

5.2.2 A minimum 102 mm (4 in.) layer of sand shall be used to provide a horizontal surface through which the gas is supplied.

5.2.3 The top surface of the burner shall be located 51 mm (2 in.) below the specimens.

5.2.4 The burner enclosure shall be located such that the edge of the diffusion surface is equidistant from both walls of the lower chase and 380 mm (15 in.) from the front of the pipe chase, as shown in Figure 5.2.4.

5.2.5 The gas supply to the burner shall be of chemically pure (C.P.) grade propane (99 percent purity or better).

5.2.6 The burner shall be capable of producing a net heat output of 20 kW ± 1 kW for 3 minutes followed by net heat output of 70 kW ± 4 kW for 7 minutes.

5.2.7 Flow rates shall be calculated using the net heat of combustion for propane of 85 MJ/m³ at standard conditions of 20°C (68°F) temperature and 100 kPa (14.70 psia) pressure.

5.2.8 The gas flow rate shall be metered throughout the test, with an accuracy within ±3 percent.
5.2.9 The heat output from the burner shall be controlled to within ±5 percent.

5.2.10 The burner design shall allow switching from 20 kW to 70 kW within 10 seconds.

5.2.11 A pilot burner or a remotely controlled spark igniter shall ignite the burner.

5.2.12 Burner controls shall be provided for automatic gas supply shutoff if flameout occurs.

5.3 Canopy Hood and Exhaust Duct.

5.3.1 A hood shall be installed above the pipe chase, as shown in Figure 5.3.1.

5.3.1.1 The face dimensions of the hood shall be at least 2.44 m × 2.44 m (8 ft × 8 ft), and the depth shall be 1.1 m (3.6 ft).

5.3.1.2 The hood shall feed into a plenum having a 0.91 m × 0.91 m (3 ft × 3 ft) cross section.

5.3.1.3 The plenum shall be a minimum height of 0.91 m (3 ft).

5.3.1.4 The height given in 5.3.1.3 shall be permitted to be increased to a maximum of 1.8 m (6 ft) to satisfy building constraints.

5.3.1.5 The exhaust duct connected to the plenum shall be as follows:

(1) A diameter of 406 mm (16 in.)
(2) Horizontal
(3) Permitted to have a circular aperture of 305 mm (12 in.) at its entrance or mixing vanes in the duct

5.3.2 The hood shall have sufficient draft to collect all of the combustion products leaving the chase.

5.3.3 During the test, this draft shall be capable of moving up to 3.4 m³/sec (7200 ft³/min), equivalent to 7.6 m³/sec (16,100 ft³/min) at 399°C (750°F).

5.3.4 Provision shall be made so that the draft can operate at 0.47 m³/sec to 3.4 m³/sec (1000 ft³/min to 7200 ft³/min).

5.3.5 Mixing vanes shall be required in the duct if concentration gradients are found to exist.

5.3.6 An alternative exhaust system design shall be permitted to be used if it can be calibrated as required in Section 6.1 and Section 6.2 and it meets the performance requirements in 5.3.2.

5.4 Instrumentation in Exhaust Duct.

5.4.1 The exhaust collection system shall be constructed with the following components:

(1) A blower
(2) A steel hood
(3) A duct
(4) A bidirectional probe
(5) A thermocouple(s)
(6) An oxygen measurement system
(7) A smoke obscuration measurement system (white light photocell lamp/detector or laser)
(8) A combustion gas sampling and analysis system

5.4.2 A bidirectional probe or an equivalent measuring system shall be used to measure gas velocity in the duct.

5.4.3 A typical probe, shown in Figure 5.4.3, shall consist of a short, stainless steel cylinder that is 44 mm (1.75 in.) long and has a 22 mm (0.875 in.) inside diameter with a solid diaphragm in the center.

5.4.4 The pressure taps on either side of the diaphragm shall support the probe.

5.4.5 The axis of the probe shall run along the centerline of the duct, 3.35 m (11 ft) downstream from the entrance.

5.4.6 The taps shall be connected to a pressure transducer that shall be able to resolve pressure differences of 0.25 Pa (0.001 in. H₂O).

5.4.7 One pair of thermocouples shall be placed 3.35 m (11 ft) downstream of the entrance to the horizontal duct.

5.4.8 The pair of thermocouples shall straddle the center of the duct.
5.4.9 The pair of thermocouples shall be separated 51 mm (2 in.) from each other.

5.5 Sampling Line.

5.5.1 The gas sampling tubes shall be constructed of a material that will not affect the concentration of the combustion gas species to be analyzed.

5.5.2 The following sequence of the gas train shall be used:
- Sampling probe
- Soot filter
- Cold trap
- Gas path pump
- Vent valve
- Drying column
- Flow controller
- Oxygen analyzer

5.5.3 The gas train shall also include spanning and zeroing facilities.

5.6 Gas Sampling and Analysis Equipment.

5.6.1 A stainless steel gas sampling tube shall be located at least 10 diameters downstream from the last turn in the duct to obtain a continuously flowing sample for determining the oxygen concentration of the exhaust gas as a function of time.

5.6.2 A filter and cold trap shall be placed in line ahead of the analyzer to remove particulates and water.

5.6.3 The oxygen analyzer shall be capable of measuring the oxygen concentration in a range from 0 percent to 21 percent with an accuracy of ±0.2 percent of full-scale setting.

5.6.3.1 The signal from the oxygen analyzer shall attain 90 percent of the calibration value within 30 seconds after introducing a step change in composition of the gas stream flowing past the inlet to the sampling tube.

5.6.4 The carbon monoxide (CO) analyzer shall have a range from 0 percent to 1.0 percent with an accuracy of ±0.02 percent of full-scale setting.

5.6.4.1 The signal from the CO analyzer shall attain 90 percent of the calibration value within 30 seconds of a step change in CO composition of the gas stream flowing past the inlet to the sampling tube.

5.6.5 The carbon dioxide (CO₂) analyzer shall have a range from 0 percent to 10 percent with an accuracy of ±0.2 percent of full-scale setting.

5.6.5.1 The signal from the CO₂ analyzer shall attain 90 percent of the value within 30 seconds of a step change in CO₂ composition of the gas stream flowing past the inlet to the sampling tube.

5.7 Smoke Density Measuring Instruments.

5.7.1 The smoke density measuring system shall be a white light system or an alternative system.

5.7.2 The lamp shall be of the incandescent filament type and shall operate at a color temperature of 2900 K ± 100 K.

5.7.2.1 The lamp shall be supplied with stabilized direct current, stable within ±0.2 percent, including temperature and short-term and long-term stability.

5.7.3 The lens system shall be selected such that the lens shall have a diameter, \(d \), chosen with regard to the focal length, \(f \), so that \(d/f \leq 0.04 \).

5.7.4 The aperture shall be placed in the focus of the lens.

5.7.5 The detector shall have a spectrally distributed response according to the CIE photopic curve.

5.7.5.1 The detector shall be linear within 5 percent over an output range of at least 3.5 decades.

5.7.5.2 The linearity of the detector shall be checked periodically with calibrated optical filters and shall cover the entire range of the instrument.

5.7.6 The system shall be mounted on the duct at a point where it will be preceded by a straight run of duct of at least 12 diameters or 5.2 m (17 ft), whichever is greater.

5.7.6.1 A photoelectric cell, whose output is directly proportional to the amount of light received, shall be mounted over the light source and connected to a recording device.

5.7.6.2 The recording device shall have an accuracy within ±1 percent of full scale for indicating changes in the attenuation of incident light resulting from the passage of smoke, particulate, and other effluents.

5.7.6.3 The distance between the light source lens and the photocell lens shall be 914 mm ± 102 mm (35.6 in. ± 3.9 in.).

5.7.6.4 The cylindrical light beam shall pass through 76 mm ± 3 mm (2.9 in. ± 0.12 in.) diameter openings at the top and bottom of the duct, with the resultant light beam centered on the photocell.

5.7.7 An alternative smoke density measuring system shall be permitted to be used if it has been shown to produce equivalent results.

5.8 Data Acquisition.

5.8.1 A digital data acquisition system shall be used to collect and record the following:
(1) Oxygen, carbon monoxide, and carbon dioxide analyzer measurements
(2) Pressure gauge measurements
(3) Temperatures
(4) Smoke measurements

5.8.2 The speed and capacity of the data system shall be sufficient to collect the data at a minimum of every 3 seconds.

5.9 Photographic Equipment. A pretest and post-test photographic record of the test specimen shall be made.

Chapter 6 Calibration

6.1 Calibration of Equipment.

6.1.1 The equipment and instrumentation shall be calibrated.

6.1.2 The heat release instrumentation shall be calibrated by burning propane.

6.1.3 The test burner described in Section 5.2 shall be used for calibration.

6.1.4 The gas supply to the burner shall be of C.P. grade propane (99 percent purity or better.)

6.1.5 The flow rate of propane shall be metered and kept constant throughout the calibration test.

6.1.6 A heat release level of 300 kW shall be used for calibration.

6.1.7 The calibration burn shall be conducted for a period of 10 minutes.

6.1.8 A calibration constant, C, shall be obtained as described in Chapter 8.

6.1.8.1 A value for C differing more than 10 percent from the theoretical value shall not be permitted, and the equipment shall be checked.

6.1.8.2 For the exhaust duct configuration described in Section 5.3 and the velocity probe described in 5.4.2, C shall have a theoretical value of 2.8.

6.2 Daily Calibration.

6.2.1 Prior to the start of each day of testing, the equipment calibrations described in 6.2.2 through 6.2.7 shall be performed.

6.2.2 The oxygen analyzer shall be zeroed and spanned.

6.2.2.1 The analyzer shall be zeroed by introducing 100 percent nitrogen gas to the instrument at the same pressure and flow rate as set for the test specimen combustion gases.

6.2.2.2 The analyzer shall be spanned by introducing ambient duct air via the sample probe and adjusting the span to 20.95 percent oxygen.

6.2.2.3 The spanning and zeroing process shall continue until adjustment-free accuracy is obtained.

6.2.3 Following zeroing and spanning, linearity of the oxygen analyzer response curve shall be verified by introducing bottled gas of a known oxygen concentration to the analyzer.

6.2.3.1 The delay time of the analyzer shall be checked by introducing ambient duct air to the analyzer and noting the time at which the analyzer readings reach 90 percent of the final reading.

6.2.4 The CO analyzer and CO₂ analyzer shall be zeroed and spanned in the same manner as the oxygen analyzer.

6.2.4.1 The analyzers shall be zeroed by introducing 100 percent nitrogen gas to the instrument at the same pressure and flow rate as set for the test specimen combustion gases.

6.2.4.2 The analyzers shall be spanned by feeding each analyzer with bottled gas containing the selected concentration of span gas and adjusting for the response range of each analyzer.

6.2.5 The delay time of each analyzer shall be determined.

6.2.5.1 The delay time shall be measured by introducing either a calibration span gas (for CO and CO₂) or a zero gas (for O₂) at the sample line just outside the duct and noting the time at which the analyzer readings reach 90 percent of the final reading.

6.2.6 Linearity of the smoke density measuring system shall be verified by interrupting the light beam with multiple calibrated neutral density filters to cover the range of the recording instrument.

6.2.7 Transmittance values measured by the photometer, using neutral density filters, shall be within ±3 percent of the calibrated value for each filter.

Chapter 7 Test Procedure

7.1 Testing Procedure.

7.1.1 Before the start of the test, the difference between the average temperature of the three thermocouples specified in 5.1.11 and the ambient room temperature shall be less than 27°C (50°F).

7.1.2 The test specimens shall be installed at equal intervals across the chase.

7.1.3 The initial exhaust hood flow rate shall be set at a rate determined to produce accurate measurements during calibration of the exhaust system and shall be adequate for the expected fire size.

7.1.4 The burner shall be positioned 380 mm ± 5 mm (15 in. ± 0.20 in.) from the front of the chase and centered side to side in the horizontal section of the pipe chase.

7.1.5 The data acquisition shall begin in order to record test instrumentation signals.

7.1.6 The burner shall be ignited and the flow rate shall be adjusted to provide a burner output of 20 kW ± 1 kW.

7.1.7 The 20 kW flow shall continue for 3 minutes.

7.1.8 Within 10 seconds following the 3-minute exposure, the gas flow shall be increased to provide a 70 kW exposure for an additional 7 minutes.

7.1.9 After 10 minutes, the burner shall be turned off.
8.1 Method of Calculation.

8.1.1 The symbols used in this chapter shall be defined as in Section 8.2 and Annex C.

8.1.2 The equations in this chapter shall use oxygen measurement only.

8.1.3 Equations that use O₂, CO₂, CO, and water vapor shall be provided in Annex C.

8.1.4 If a CO₂ analyzer is used and CO₂ is not removed from the oxygen sampling lines, then the appropriate equations in Annex C shall be used.

8.2 Symbols. The following symbols shall be used in this chapter:

\[C = \text{calibration constant using propane (m}^{1/2}\text{kg}^{-1/2}\text{K}^{1/2}) \]

\[\Delta H / T_0 = \text{net heat released per kg of } O_2 \text{ consumed (kJ/kg), where } \Delta H \text{ equals net heat of combustion (kJ/kg) and } T_0 \text{ equals stoichiometric oxygen/fuel mass ratio} \]

\[I = \text{light intensity} \]

\[I_0 = \text{light intensity with no smoke} \]

\[k = \text{extinction coefficient (m}^{-1}\text{)} \]

\[l = \text{path length (m)} \]

\[\Delta P = \text{bidirectional probe pressure differential (Pa)} \]

\[\dot{q} = \text{heat release rate (kW)} \]

\[t = \text{time (sec)} \]

\[t_d = \text{oxygen analyzer delay time (sec)} \]

\[T = \text{absolute temperature of gas at the orifice meter (K)} \]

\[SRR = \text{smoke release rate (m}^3\text{/sec)} \]

8.3 Calibration Constant Using Propane.

8.3.1 The calibration constant shall be obtained from the following equation:

\[N = \frac{170}{1.10(12.77 \times 10^3)} \left[\frac{T}{\Delta P} \left(\frac{1.084 - 1.4\dot{X}_0}{\dot{X}_0 - \dot{X}_0} \right) \right] \]

8.3.2 In the equation given in 8.3.1, 170 shall correspond to 170 kW propane supplied, 12.77 \times 10^3 shall equal \(\Delta H / T_0 \) for propane, and 1.10 shall be the ratio of oxygen to air molecular weight.

8.4 Heat Release for Test Specimens.

8.4.1 Prior to performing additional calculations, the oxygen analyzer time shift shall be determined by the following equation:

\[N \]

\[\dot{X}_0(t) = \dot{X}_0(t-t_d) \]

8.4.2 The heat release rate then shall be determined by the following equation:

\[N \]

\[q(t) = \left(\frac{\Delta H}{T_0} \right) 1.10 \left(\frac{\Delta P}{T} \right) \left(\frac{\dot{X}_0 - \dot{X}_0(t)}{1.084 - 1.4\dot{X}_0(t)} \right) \]

8.4.3 The value of \(\Delta H / T_0 \) for the test specimen shall be set to equal 13.1 \times 10^3 kJ/kg unless a more accurate value is known for the test specimen.

8.4.4 The total heat released during the 10-minute (600-second) test shall be determined by the following equation:

\[N \]

\[THR = \sum_{i=0}^{600} q(i) \Delta t \]

8.5 Smoke Obscuration.

8.5.1 The extinction coefficient (k) of smoke shall be determined by the following equation:

\[N \]

\[k = \frac{1}{L} \ln \left(\frac{I}{I_0} \right) \]

8.5.2 The smoke release rate (SRR) shall be calculated using the optical density per linear path length and the volumetric flow rate in the duct.

8.5.2.1 The SRR shall be determined by the following equation:

\[N \]

\[SRR = kv \]

where:

- \(SRR = \) smoke release rate (m\(^3\)/sec)
- \(k = \) extinction coefficient
- \(v = \) volumetric flow rate (m\(^3\)/sec referred to 298 K)
Chapter 9 Report of Results

9.1 Documentation. The following shall be reported for each test specimen:

1. Test specimen identification or number
2. Manufacturer or submitter
3. Date of test
4. Operator
5. Composition or generic identification of all components of the insulation assembly
6. Details of preparation including the location and treatment of each component in the assembly
7. Measured outside diameter and inside diameter of the pipe insulation
8. Number of replicate test specimens tested
9. Peak rate of heat release (kW)
10. Time to peak rate of heat release (seconds)
11. Total heat released during the 10-minute test (THR)
12. Plot of the heat release over time
13. Total smoke released during the 10-minute test (TSR)
14. Plot of the smoke generation over time
15. Pretest photographic record of test specimen
16. Written record of any flameout at the top of the chase
17. Written record of dripping or other visual observations
18. Post-test photographic record of test specimen

Annex A Explanatory Material

Annex A is not a part of the requirements of this NFPA document but is included for informational purposes only. This annex contains explanatory material, numbered to correspond with the applicable text paragraphs.

A1.1 The results of the test are intended to be applicable in determining the acceptability of pipe insulation systems. Heat release rate is indicated by measurement of oxygen depletion, and smoke generation is determined by smoke density measurement.

A1.2.2 Heat and smoke release rate measurements are sources of useful information for the regulation of materials in buildings and product development. They provide a quantitative measure of specific changes in fire performance caused by product modifications.

A1.3.1 The purpose of this test is to examine insulation products as complete systems and to differentiate between products with a flame spread and fire scenario to which other test methods are not always sensitive. This test ignites materials that might otherwise melt away from the ignition source. In the vertical over horizontal chase configuration used by this test, ignition can occur in the horizontal section before the material in the vertical section melts from the pipes, and if there is sufficient heat from the horizontal section the vertical material will also burn.

A1.3.3 Insulation systems producing fires of a few kilowatts to greater than 1 megawatt have been measured in this apparatus. It is believed that because the vertical section is on top of the horizontal section this apparatus is well ventilated. The buoyant heated gases move through the vertical section more readily than a configuration with a long horizontal section on top of a shorter vertical section.

A1.3.6 An ignition source that will ignite a variety of insulation materials and allow differentiation of the fire performance of these materials was sought for this test. Experiments utilizing equipment similar to the pipe chase in this method were performed using a 1.81 kg (4 lb) crib made of nominal 25 mm (1 in.) thick pine lumber. The 20 kW to 70 kW gas burner roughly approximates the heat release from the 1.81 kg (4 lb) wood crib. This size ignition source was large enough to ignite all the insulation materials examined without completely consuming every type of material.

A5.2.6 Total heat output of the burner for the full 10-minute exposure is 33 MJ ± 2 MJ.

Annex B Commentary

This annex is not a part of the requirements of this NFPA document but is included for informational purposes only.

B.1 Measurement Section Instrumentation.

B.1.1 The locations for velocity, temperature, gas analysis, and smoke photometer should be chosen to ensure that the products of combustion are well mixed and not stratified at the sampling location. The general rule should be for the duct to run a sufficient length (10 diameters) downstream from the last turn in the duct prior to location of instrumentation in order to provide for a fully developed gas flow. Mixing vanes should be used in the duct if concentration gradients are found to exist.

B.1.2 A laser beam system can be permitted to be used as an alternative system for measuring smoke obscuration.

B.2 Mounting.

B.2.1 Three pipes are used to provide a configuration where radiation and reradiation can occur between burning specimens, the center specimen potentially receiving energy on two sides. The recommended spacing between the installed insulation assemblies of 50 mm ± 13 mm (2 in. ± 1/8 in.) is a distance believed to produce significant radiation between the pipes and yet allow enough space for easy installation.

B.2.2 Specimens of alternative size could be tested with this method on different diameter pipes if it is not possible to manufacture material in the standard size required. The spacing between the insulation assemblies should remain 50 mm ± 13 mm (2 in. ± 1/8 in.). Any deviation from the standard should be noted in the report.

B.3 Conditions of Acceptance.

B.3.1 The performance of the pipe insulation assembly should be judged on the basis of data obtained during the test.

B.3.2 The acceptance should be valid for the pipe insulation assembly tested, including the actual thickness and all accessories used in the assembly.

B.3.3 Assemblies should be considered to have acceptable performance if B.3.4 through B.3.7 are all met during the 10-minute test.

B.3.4 Peak rate of heat release should be 300 kW or less.

B.3.5 Total heat released at 10 minutes (THR), which includes the heat released by the burner, should be 83 MJ or less. This limit corresponds to 50 MJ above the total heat release of the burner for the full 10-minute burn.
B.3.6 Total smoke release (TSR\textsubscript{av}) should be 500 m2 (5382 ft2) or less.

B.3.7 Flames should not extend 0.3 m (1 ft) or more above the top of the vertical portion of the apparatus at any time during the test.

B.3.8 The temperature of any of the three thermocouples specified in 5.1.11 should not exceed 538°C (1000°F) at any time during the test.

\section*{\textbf{A.4} Insulation Materials.} The Uniform Mechanical Code (UMC) uses this test for regulation of pipe insulation materials in plenums. The conditions of acceptance in the UMC are slightly different from those in Section B.3. The International Mechanical Code (IMC), NFPA 5000, and NFPA 90A use ASTM E84, Standard Test Method for Surface Burning Characteristics of Building Materials, or ANSI/UL 723, Standard Test Method for Surface Burning Characteristics of Building Materials, for regulation of both pipe insulation and duct insulation.

\section*{Annex C Heat Release Calculations Using Additional Gas Analysis}

\textit{This annex is not a part of the requirements of this NFPA document but is included for informational purposes only.}

\section*{C.1 Calculation of Heat Release with Additional Gas Analysis.}

C.1.1 The equations used to calculate the heat release rate in Chapter 8 assume that CO\textsubscript{2} is removed from the gas sample in a chemical scrubber before oxygen is measured. Some laboratories are equipped to measure CO\textsubscript{2} in such a case, it is not necessary to remove the CO\textsubscript{2} from the oxygen line. The advantage is that the chemical scrubbing agent, which is costly and needs careful handling, can be avoided.

C.1.2 In this annex, equations are provided that should be used when CO\textsubscript{2} is measured but not scrubbed out of the sampling lines. Two cases are considered. In the first case, part of the dried and filtered sample stream is diverted into infrared CO\textsubscript{2} and CO analyzers. In the second case, a water vapor analyzer is also added. To avoid condensation when measuring water vapor concentration in the flow of combustion products, a separate sampling system with heated filters, heated sampling lines, and a heated analyzer is needed.

\section*{Symbols.} The following symbols are used in this annex (in addition to those in Section 8.2):

\begin{itemize}
 \item M_a = molecular weight of air (kg/kmol)
 \item M_c = molecular weight of the combustion products (kg/kmol)
 \item \dot{m}_e = exhaust duct mass flow rate (kg/sec)
 \item t^1_{CO} = time delay of the CO\textsubscript{2} analyzer (sec)
 \item t^2_{CO} = time delay of the CO analyzer (sec)
 \item t^3_{H2O} = time delay of the water vapor analyzer (sec)
 \item X^0_{CO} = initial CO reading, mole fraction
 \item X^0_{CO2} = initial CO\textsubscript{2} reading, mole fraction
 \item X^0_{H2O} = initial water vapor reading, mole fraction
 \item X^n_{CO} = CO reading before delay time correction, mole fraction
 \item X^n_{CO2} = CO\textsubscript{2} reading before delay time correction, mole fraction
 \item X^n_{H2O} = water vapor reading before delay time correction, mole fraction
 \item X_{CO} = CO reading after delay time correction, mole fraction
 \item X_{CO2} = CO\textsubscript{2} reading after delay time correction, mole fraction
 \item X_{H2O} = water reading after delay time correction, mole fraction
 \item ϕ = oxygen depletion factor
\end{itemize}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{formula.png}
\caption{Heat release calculation formulas.}
\end{figure}

C.3 Where CO\textsubscript{2} and CO Are Measured.

C.3.1 As in the case of the oxygen analyzer, measurements of CO\textsubscript{2} and CO should be time-shifted to take transport time in the sampling lines into account as follows:

\begin{equation}
X^0_{CO}(t) = X^0_{CO}(t + t^1_{CO})
\end{equation}
\begin{equation}
X^0_{CO2}(t) = X^0_{CO2}(t + t^2_{CO})
\end{equation}
\begin{equation}
X^0_{H2O}(t) = X^0_{H2O}(t + t^3_{H2O})
\end{equation}

The delay times for the CO\textsubscript{2} and CO analyzers are usually different (smaller) from the delay time for the oxygen (O\textsubscript{2}) analyzer.

C.3.2 The exhaust duct flow is determined as follows:

\begin{equation}
\dot{m}_e = C \sqrt{\frac{\Delta P}{T_e}}
\end{equation}

C.3.3 The rate of heat release now can be determined as follows:

\begin{equation}
\dot{q} = 1.10 \left(\frac{\Delta H}{\rho}\right) X^0_{CH4} \left[\phi - 0.172(1-\phi) \frac{X^0_{CO2}}{X^0_{H2O}} \right] \dot{m}_e
\end{equation}

C.3.4 The oxygen depletion factor is calculated as follows:

\begin{equation}
\phi = \frac{X^0_{O2} \left(1 - X^0_{H2O} \right) - \left(1 - X^n_{H2O} \right)}{X^0_{O2} \left(1 - X^n_{CO2} \right) - \left(1 - X^n_{CO2} \right)}
\end{equation}

C.3.5 The ambient mole fraction of oxygen (O\textsubscript{2}) is determined as follows:

\begin{equation}
X^0_{O2} = \left(1 - X^n_{H2O}\right) X^0_{O2}
\end{equation}
ANNEX D

C.3.6 The second value in the numerator of the factor in brackets in the equation in C.3.3 is a correction factor for incomplete combustion of some carbon to CO instead of CO₂.

In fact, \(\dot{X}_{\text{CO}} \) is usually very small, so that it can be disregarded in the equations in C.3.3 and C.3.4. The practical implication of this value is that a CO analyzer will generally not result in a noticeable increase in accuracy of heat release rate measurements. Consequently, the equations in C.3.3 and C.3.4 can be permitted to be used even if no CO analyzer is present by using the setting \(\dot{X}_{\text{CO}} = 0 \).

C.4 Where Water Vapor Is Also Measured.

C.4.1 In an open combustion system, such as that used in this test method, the flow rate of air entering the system cannot be measured directly but is inferred from the flow rate measured in the exhaust duct. An assumption regarding the expansion due to combustion of the fraction of the air that is fully depleted of its oxygen is necessary. This expansion depends on the composition of the fuel and the actual stoichiometry of the combustion. A suitable average value for the volumetric expansion factor is 1.084, which is the factor for propane.

C.4.2 This expansion factor value is already incorporated within the equation in 8.4.2 and the equation in C.3.3. It can be assumed that the exhaust gases consist primarily of nitrogen, oxygen, CO₂, water vapor, and CO; thus, measurements of these gases can be used to determine the actual expansion. (It is assumed that the measurements of oxygen, CO₂, and CO refer to a dry gas stream, while the water vapor measurement corresponds to total stream flow.) The mass flow rate in the exhaust duct is then more accurately determined by the following equation:

\[
N \quad \dot{m}_r = \frac{\Delta P}{\sqrt{T_r} \sqrt{M_r}} [\text{C.4.2}]
\]

C.4.2.1 The molecular weight, \(M_r \), of the exhaust gases is determined as follows:

\[
M_r = \left[4.5 + (1 - X_{\text{H}_2\text{O}})(2.5 + \dot{X}_{\text{CO}} + 4 \dot{X}_{\text{CO}_2}) \right]^4 \quad [\text{C.4.2.1}]
\]

C.4.2.2 Using 28.97 as the value for \(M_r \) the heat release rate is determined as follows:

\[
\dot{q}(t) = 1.10 \left(\frac{\Delta H}{\rho_o} \right) \left[1 - X_{\text{H}_2\text{O}} \right] \left[\frac{\dot{X}_{\text{CO}_2} (1 - \dot{X}_{\text{CO}} - \dot{X}_{\text{CO}_2})}{1 - \dot{X}_{\text{H}_2\text{O}} - \dot{X}_{\text{CO}_2}} - X_{\text{H}_2\text{O}} \right] \dot{m}_r \quad [\text{C.4.2.2}]
\]

C.4.3 The water vapor readings used in the equation in C.4.2.2 are time-shifted in a similar way to those in the equations in C.3.1 for the other types of analyzers as follows:

\[
\dot{X}_{\text{H}_2\text{O}}(t) = \dot{X}_{\text{H}_2\text{O}}(t - \tau) \quad [\text{C.4.3}]
\]

Annex D Informational References

D.1 Referenced Publications. The documents or portions thereof listed in this annex are referenced within the informational sections of this standard and are not part of the requirements of this document unless also listed in Chapter 2 for other reasons.

D.1.1 NFPA Publications.

D.1.2 Other Publications.

D.1.2.1 ASTM Publications. ASTM International, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959.

D.1.2.2 IAPMO Publications. International Association of Plumbing and Mechanical Officials, 4755 E. Philadelphia Street, Ontario, CA 91761.

Uniform Mechanical Code (UMC), 2015.

D.1.2.3 ICC Publications. International Code Council, 500 New Jersey Avenue, NW, 6th Floor, Washington, DC 20001.

International Mechanical Code (IMC), 2015.

D.1.2.4 UL Publications. Underwriters Laboratories Inc., 333 Pfingsten Road, Northbrook, IL 60062-2096.

D.2 Informational References. (Reserved)

D.3 References for Extracts in Informational Sections. (Reserved)
Index

Copyright © 2017 National Fire Protection Association. All Rights Reserved.

The copyright in this index is separate and distinct from the copyright in the document that it indexes. The licensing provisions set forth for the document are not applicable to this index. This index may not be reproduced in whole or in part by any means without the express written permission of NFPA.

-A-
Administration, Chap. 1
 Application, 1.3
 Purpose, 1.2
 Scope, 1.1, A.1.1
 Units and Formulas, 1.4
 Primary Values, 1.4.2
 SI Units, 1.4.1

-C-
Calculations, Chap. 8
 Calibration Constant Using Propane, 8.3
 Heat Release for Test Specimens, 8.4
 Method of Calculation, 8.1
 Smoke Obscuration, 8.5
 Symbols, 8.2

Calibration, Chap. 6
 Calibration of Equipment, 6.1
 Daily Calibration, 6.2

Commentary, Annex B
 Conditions of Acceptance, B.3
 Insulation Materials, B.4
 Measurement Section Instrumentation, B.1
 Mounting, B.2

-D-
Definitions, Chap. 3
 Shall Definition, 3.2.1
 Should Definition, 3.2.2
 Standard Definition, 3.2.3

Explanatory Material, Annex A

-H-
Heat Release Calculations Using Additional Gas Analysis, Annex C
 Calculation of Heat Release with Additional Gas Analysis, C.1
 Symbols, C.2

Where CO2 and CO Are Measured, C.3
Where Water Vapor Is Also Measured, C.4

-I-
Informational References, Annex D

-R-
Referenced Publications, Chap. 2

Report of Results, Chap. 9
 Documentation, 9.1

-S-
Shall
 Definition, 3.2.1
Should
 Definition, 3.2.2

Standard
 Definition, 3.2.3

-T-
Test Equipment and Instrumentation, Chap. 5
 Canopy Hood and Exhaust Duct, 5.3
 Data Acquisition, 5.8
 Gas Sampling and Analysis Equipment, 5.6
 Ignition Source, 5.2
 Instrumentation in Exhaust Duct, 5.4
 Photographic Equipment, 5.9
 Pipe Chase, 5.1
 Sampling Line, 5.5
 Smoke Density Measuring Instruments, 5.7

Test Procedure, Chap. 7
 Testing Procedure, 7.1

Test Specimens, Chap. 4
 Conditioning, 4.2
 Size and Preparation, 4.1
Sequence of Events for the Standards Development Process

Once the current edition is published, a Standard is opened for Public Input.

Step 1 – Input Stage
- Input accepted from the public or other committees for consideration to develop the First Draft
- Technical Committee holds First Draft Meeting to revise Standard (23 weeks); Technical Committee(s) with Correlating Committee (10 weeks)
- Technical Committee ballots on First Draft (12 weeks); Technical Committee(s) with Correlating Committee (11 weeks)
- Correlating Committee First Draft Meeting (9 weeks)
- Correlating Committee ballots on First Draft (5 weeks)
- First Draft Report posted on the document information page

Step 2 – Comment Stage
- Public Comments accepted on First Draft (10 weeks) following posting of First Draft Report
- If Standard does not receive Public Comments and the Technical Committee chooses not to hold a Second Draft meeting, the Standard becomes a Consent Standard and is sent directly to the Standards Council for issuance (see Step 4) or
- Technical Committee holds Second Draft Meeting (21 weeks); Technical Committee(s) with Correlating Committee (7 weeks)
- Technical Committee ballots on Second Draft (11 weeks); Technical Committee(s) with Correlating Committee (10 weeks)
- Correlating Committee Second Draft Meeting (9 weeks)
- Correlating Committee ballots on Second Draft (8 weeks)
- Second Draft Report posted on the document information page

Step 3 – NFPA Technical Meeting
- Notice of Intent to Make a Motion (NITMAM) accepted (5 weeks) following the posting of Second Draft Report
- NITMAMs are reviewed and valid motions are certified by the Motions Committee for presentation at the NFPA Technical Meeting
- NFPA membership meets each June at the NFPA Technical Meeting to act on Standards with “Certified Amending Motions” (certified NITMAMs)
- Committee(s) vote on any successful amendments to the Technical Committee Reports made by the NFPA membership at the NFPA Technical Meeting

Step 4 – Council Appeals and Issuance of Standard
- Notification of intent to file an appeal to the Standards Council on Technical Meeting action must be filed within 20 days of the NFPA Technical Meeting
- Standards Council decides, based on all evidence, whether to issue the standard or to take other action

Notes:
1. Time periods are approximate; refer to published schedules for actual dates.
2. Annual revision cycle documents with certified amending motions take approximately 101 weeks to complete.
3. Fall revision cycle documents receiving certified amending motions take approximately 141 weeks to complete.

Committee Membership Classifications

The following classifications apply to Committee members and represent their principal interest in the activity of the Committee.

1. M Manufacturer: A representative of a maker or marketer of a product, assembly, or system, or portion thereof, that is affected by the standard.
2. U User: A representative of an entity that is subject to the provisions of the standard or that voluntarily uses the standard.
3. IM Installer/Maintainer: A representative of an entity that is in the business of installing or maintaining a product, assembly, or system affected by the standard.
4. L Labor: A labor representative or employee concerned with safety in the workplace.
5. RT Applied Research/Testing Laboratory: A representative of an independent testing laboratory or independent applied research organization that promulgates and/or enforces standards.
6. E Enforcing Authority: A representative of an agency or an organization that promulgates and/or enforces standards.
7. I Insurance: A representative of an insurance company, broker, agent, bureau, or inspection agency.
8. C Consumer: A person who is or represents the ultimate purchaser of a product, system, or service affected by the standard, but who is not included in (2).
9. SE Special Expert: A person not representing (1) through (8) and who has special expertise in the scope of the standard or portion thereof.

NOTE 1: “Standard” connotes code, standard, recommended practice, or guide.
NOTE 2: A representative includes an employee.
NOTE 3: While these classifications will be used by the Standards Council to achieve a balance for Technical Committees, the Standards Council may determine that new classifications of member or unique interests need representation in order to foster the best possible Committee deliberations on any project. In this connection, the Standards Council may make such appointments as it deems appropriate in the public interest, such as the classification of “Utilities” in the National Electrical Code Committee.
NOTE 4: Representatives of subsidiaries of any group are generally considered to have the same classification as the parent organization.
Submitting Public Input / Public Comment Through the Online Submission System

Soon after the current edition is published, a Standard is open for Public Input.

Before accessing the Online Submission System, you must first sign in at www.nfpa.org. Note: You will be asked to sign-in or create a free online account with NFPA before using this system:

a. Click on Sign In at the upper right side of the page.
b. Under the Codes and Standards heading, click on the “List of NFPA Codes & Standards,” and then select your document from the list or use one of the search features.

OR

a. Go directly to your specific document information page by typing the convenient shortcut link of www.nfpa.org/document# (Example: NFPA 921 would be www.nfpa.org/921). Sign in at the upper right side of the page.

To begin your Public Input, select the link “The next edition of this standard is now open for Public Input” located on the About tab, Current & Prior Editions tab, and the Next Edition tab. Alternatively, the Next Edition tab includes a link to Submit Public Input online.

At this point, the NFPA Standards Development Site will open showing details for the document you have selected. This “Document Home” page site includes an explanatory introduction, information on the current document phase and closing date, a left-hand navigation panel that includes useful links, a document Table of Contents, and icons at the top you can click for Help when using the site. The Help icons and navigation panel will be visible except when you are actually in the process of creating a Public Input.

Once the First Draft Report becomes available there is a Public Comment period during which anyone may submit a Public Comment on the First Draft. Any objections or further related changes to the content of the First Draft must be submitted at the Comment stage.

To submit a Public Comment you may access the online submission system utilizing the same steps as previously explained for the submission of Public Input.

For further information on submitting public input and public comments, go to: http://www.nfpa.org/publicinput.

Other Resources Available on the Document Information Pages

About tab: View general document and subject-related information.

Next Edition tab: Follow the committee’s progress in the processing of a Standard in its next revision cycle.

Technical Committee tab: View current committee member rosters or apply to a committee.

Technical Questions tab: For members and Public Sector Officials/AHJs to submit questions about codes and standards to NFPA staff. Our Technical Questions Service provides a convenient way to receive timely and consistent technical assistance when you need to know more about NFPA codes and standards relevant to your work. Responses are provided by NFPA staff on an informal basis.

Products & Training tab: List of NFPA’s publications and training available for purchase.
Information on the NFPA Standards Development Process

I. Applicable Regulations. The primary rules governing the processing of NFPA standards (codes, standards, recommended practices, and guides) are the NFPA Regulations Governing the Development of NFPA Standards (Regs). Other applicable rules include NFPA Bylaws, NFPA Technical Meeting Convention Rules, NFPA Guide for the Conduct of Participants in the NFPA Standards Development Process, and the NFPA Regulations Governing Petitions to the Board of Directors from Decisions of the Standards Council. Most of these rules and regulations are contained in the NFPA Standards Directory. For copies of the Directory, contact Codes and Standards Administration at NFPA Headquarters; all these documents are also available on the NFPA website at “www.nfpa.org.”

The following is general information on the NFPA process. All participants, however, should refer to the actual rules and regulations for a full understanding of this process and for the criteria that govern participation.

II. Technical Committee Report. The Technical Committee Report is defined as “the report of the responsible Committee(s), in accordance with the Regulations, in preparation of a new or revised NFPA Standard.” The Technical Committee Report is in two parts and consists of the First Draft Report and the Second Draft Report. (See Regs at Section 1.4.)

III. Step 1: First Draft Report. The First Draft Report is defined as “Part one of the Technical Committee Report, which documents the Input Stage.” The First Draft Report consists of the First Draft, Public Input, Committee Input, Committee and Correlating Committee Statements, Correlating Notes, and Ballot Statements. (See Regs at 4.2.5.2 and Section 4.3.) Any objection to an action in the First Draft Report must be raised through the filing of an appropriate Comment for consideration in the Second Draft Report or the objection will be considered resolved. [See Regs at 4.3.1(b).]

IV. Step 2: Second Draft Report. The Second Draft Report is defined as “Part two of the Technical Committee Report, which documents the Comment Stage.” The Second Draft Report consists of the Second Draft, Public Comments with corresponding Committee Actions and Committee Statements, Correlating Notes, and their respective Committee Statements, Committee Comments, Correlating Notes, and Ballot Statements. (See Regs at 4.2.5.2 and Section 4.4.) The First Draft Report and the Second Draft Report together constitute the Technical Committee Report. Any outstanding objection following the Second Draft Report must be raised through an appropriate Amending Motion at the NFPA Technical Meeting or the objection will be considered resolved. [See Regs at 4.4.1(b).]

V. Step 3a: Action at NFPA Technical Meeting. Following the publication of the Second Draft Report, there is a period during which those wishing to make proper Amending Motions on the Technical Committee Reports must signal their intention by submitting a Notice of Intent to Make a Motion (NITMAM). (See Regs at 4.5.2.) Standards that receive notice of proper Amending Motions (Certified Amending Motions) will be presented for action at the annual June NFPA Technical Meeting. At the meeting, the NFPA membership can consider and act on these Certified Amending Motions as well as Follow-up Amending Motions, that is, motions that become necessary as a result of a previous successful Amending Motion. (See 4.5.3.2 through 4.5.3.6 and Table 1, Columns 1-3 of Regs for a summary of the available Amending Motions and who may make them.) Any outstanding objection following action at an NFPA Technical Meeting (and any further Technical Committee consideration following successful Amending Motions, see Regs at 4.5.3.7 through 4.6.5.3) must be raised through an appeal to the Standards Council or it will be considered to be resolved.

VI. Step 3b: Documents Forwarded Directly to the Council. Where no NITMAM is received and certified in accordance with the Technical Meeting Convention Rules, the standard is forwarded directly to the Standards Council for action on issuance. Objections are deemed to be resolved for these documents. (See Regs at 4.5.2.5.)

VII. Step 4a: Council Appeals. Anyone can appeal to the Standards Council concerning procedural or substantive matters related to the development, content, or issuance of any document of the NFPA or on matters within the purview of the authority of the Council, as established by the Bylaws and as determined by the Board of Directors. Such appeals must be in written form and filed with the Secretary of the Standards Council (see Regs at Section 1.6). Time constraints for filing an appeal must be in accordance with 1.6.2 of the Regs. Objections are deemed to be resolved if not pursued at this level.

VIII. Step 4b: Document Issuance. The Standards Council is the issuer of all documents (see Article 8 of Bylaws). The Council acts on the issuance of a document presented for action at an NFPA Technical Meeting within 75 days from the date of the recommendation from the NFPA Technical Meeting, unless this period is extended by the Council (see Regs at 4.7.2). For documents forwarded directly to the Standards Council, the Council acts on the issuance of the document at its next scheduled meeting, or at such other meeting as the Council may determine (see Regs at 4.5.2.5 and 4.7.4).

IX. Petitions to the Board of Directors. The Standards Council has been delegated the responsibility for the administration of the codes and standards development process and the issuance of documents. However, where extraordinary circumstances requiring the intervention of the Board of Directors exist, the Board of Directors may take any action necessary to fulfill its obligations to preserve the integrity of the codes and standards development process and to protect the interests of the NFPA. The rules for petitioning the Board of Directors can be found in the Regulations Governing Petitions to the Board of Directors from Decisions of the Standards Council and in Section 1.7 of the Regs.

X. For More Information. The program for the NFPA Technical Meeting (as well as the NFPA website as information becomes available) should be consulted for the date on which each report scheduled for consideration at the meeting will be presented. To view the First Draft Report and Second Draft Report as well as information on NFPA rules and for up-to-date information on schedules and deadlines for processing NFPA documents, check the NFPA website (www.nfpa.org/docinfo) or contact NFPA Codes & Standards Administration at (617) 984-7246.
Have a question about the code or standard you’re reading now?

NFPA Xchange™ can help!

NFPA Xchange™ brings together over 30,000 professionals worldwide, asking and answering each other’s questions, sharing ideas, and discussing the issues impacting your industry today.

NFPA Xchange™ is free to join and offers:

- A robust collection of previously asked and answered questions to search
- Access to thousands of peers for problem-solving and on-the-job advice
- NFPA blogs, white papers, and webinars in one convenient place

NFPA members also enjoy Xchange™ Members Only, the online space for technical questions* answered by NFPA staff, exclusive NFPA live events, and premier access to curated content.

Join NFPA Xchange™ TODAY!

www.nfpa.org/xchange

Xchange Today. Safer Tomorrow.

*For the full terms of use, please visit nfpa.org/standard_items/terms-of-use#xchange. NFPA® is a registered trademark of the National Fire Protection Association, Quincy, MA 02169.