The third edition of *Groundwater*, AWWA Manual M21, is newly designed and fully updated to give operators, engineers, and other water supply professionals a comprehensive understanding of groundwater. The manual provides a basic understanding of groundwater characteristics—its movement, quality, and geology—and the impact these characteristics have on the design, construction, and maintenance of groundwater-well systems for water supply. Additionally, this manual will help water supply professionals answer many of the questions they have about complex aquifer systems, quality testing, pumps and pumping systems, contamination, and treatment.
Groundwater

AWWA MANUAL M21

Third Edition

American Water Works Association

Science and Technology

AWWA unites the drinking water community by developing and distributing authoritative scientific and technological knowledge. Through its members, AWWA develops industry standards for products and processes that advance public health and safety. AWWA also provides quality improvement programs for water and wastewater utilities.
Contents

List of Figures, v
List of Tables, ix
Foreword, xi

Chapter 1 The Occurrence and Behavior of Groundwater .. 1
- Hydrologic Cycle, 1
- Groundwater Terms, 5
- Groundwater Concepts, 6
- Land Subsidence, 11

Chapter 2 Evaluation of Regional Groundwater Conditions 13
- Identification of Suitable Groundwater Supplies, 14
- Field Methods for Locating Suitable Groundwater Supplies, 16
- Methods for Monitoring Groundwater Quality, 25
- Field Logistics and Documentation, 27
- References, 30

Chapter 3 Groundwater Management and Protection ... 33
- Local Management Strategies, 34
- Regional Groundwater Management, 36
- Protection and Management of Groundwater Quality, 37
- References, 39

Chapter 4 Wells—Types, Construction, and Use ... 41
- Types of Wells and Their Construction, 41
- Common Well Components, 51
- Well Design Procedure, 59
- Sanitary Protection, 60
- References, 61

Chapter 5 Quantitative Evaluation of Wells ... 63
- Aquifer Parameters, 63
- Transmissivity and Storage Coefficient, 77
- Collection of Test Data, 78
- Analysis, 78
- Well-Field Design, 87
- Well Losses, 89
- Radial-Well Yield, 90
- Modeling Techniques, 91
- References, 96
- Bibliography, 96

Chapter 6 Well Pumps and Pumping ... 99
- Definitions, 99
- Pump Classifications, 101
- Operating Conditions, 116
- Pump Selection, 117
- Electric Motor Selection, 120
Figures

1-1 Hydrologic cycle, 2
1-2 Evapotranspiration rates, 3
1-3 A comparison of evapotranspiration rates and rainfall in South Florida, 3
1-4 One-hour rainfall (inches) expected once on average in 25 years, 4
1-5 Average annual precipitation (inches) in the United States (1961–1990), 5
1-6 Water movement below the earth’s surface, 8
1-7 Geologic configuration of aquifers and confining beds, 9
1-8 Development of a cone of depression, 9
1-9 Groundwater movement as it relates to topography, 10
2-1 Schlumberger and Wenner electrode arrangements for measuring earth resistivity, 18
2-2 Application of seismic refraction method for reconnaissance mapping, 20
2-3 Single-point electrode arrangement for resistance and spontaneous potential logging, 22
2-4 Qualitative interpretation of a suite of geophysical logs, 24
2-5 Schematic of a multiple-completion monitoring well, 27
2-6 Graphic detail of hydrogeologic cross section, 29
2-7 Predevelopment groundwater contours showing potential contamination source downgradient, 29
2-8 Predevelopment groundwater contours showing predicted effects of ill-advised development, 30
3-1 Groundwater management framework, 35
3-2 Contaminated groundwater management strategies, 35
4-1 Details of a radial well, 49
4-2 Two phases of gravel-wall well construction—gravel envelope method, 51
4-3 Scale of screen-opening sizes, 57
4-4 Cross-sectional comparison of well walls, 58
5-1 Theoretical cube, 64
5-1 Definition of porosity, 64
5-3 Definition of specific yield and specific retention, 66
5-4 Definition of heads and gradients, 67
5-5 Example well location to be used in determining direction of groundwater movement and hydraulic gradient, 68
5-6 Steps in determining direction of groundwater movement and hydraulic gradient, 68
5-7 Definition of hydraulic conductivity, 69
5-8 Hydraulic conductivity of selected rocks, 70
5-9 Definition of capillarity and unsaturated flow, 71
5-10 Determining capillary gradient from tensiometer measurements of hydraulic pressures, 73
5-11 Relation between degree of saturation and the ratio of saturated and unsaturated hydraulic conductivity for coarse sand, 73
5-12 Definition of transmissivity, 74
5-13 Calculation of transmissivity using stream discharge, 75
5-14 Definition of storage coefficient, 76
5-15 Hypothetical test situation—infinte aquifer, 79
5-16 Hydrograph for observation well no. 1, 81
5-17 Drawdown test data superimposed on Theis-type curve, 83
5-18 Straight-line approximation of drawdown data analysis, 83
5-19 Hypothetical test situation—aquifer bounded by impermeable barrier, 84
5-20 Effect of impermeable barrier shown on straight-line drawdown plot, 85
5-21 Hypothetical test situation—aquifer bounded by recharging stream, 86
5-22 Definition of effect of recharging stream shown on straight-line drawdown plot, 86
5-23 Influence for various rates of pumping in an aquifer, 88
5-24 Steps for model application, 93
6-1 Schematic illustrating total static head, 100
6-2 Volute-type centrifugal pump, 108
6-3 Diffuser-type centrifugal pump, 108
6-4 Vertical deep-well turbine pump, 111
6-5 Rotary-displacement pump, 111
6-6 Rotary-gear pump, 112
6-7 Plunger-type pump, 113
6-8 Airlift pump: (A) bottom inlet; (B) side inlet; (C) casing inlet, 115
6-9 Jet-type deep-well pump, 116
7-1 Operating problems resulting from a drop in the water table, 126
7-2 Centrifugal sand sampler, 130
7-3 Well efficiency monitoring, catamount wellfield, 136
7-4 Example of well performance history, 137
7-5 Example of corroded column pipe, 139
8-1 Nitrogen impacts, 158
8-2 Flow of contamination from a ponded surface source into an aquifer, 164
9-1 Membrane and conventional process overview, 172
9-2 Typical reverse osmosis or nanofiltration membrane system, 172
11-1 Aquifer storage and recovery conceptual diagram for brackish water aquifers, 185
11-2 Collier County ASR project graph showing recovery efficiency improvement for each succeeding cycle, 186
11-3 Schematic of Peace River ASR system, 187
11-4 Cross section of the ASR system, 188
11-5 Historical operation of the ASR wells, 189
11-6 Cumulative volume in storage, 189
11-7 Depletion of storage and the TDS of water, 190
11-8 Results of a recent extended recovery period, 191
11-9 Biscayne Aquifer reclamation water movement after injection, 193
11-10 Biscayne Aquifer reclamation buoyancy movement after injection, 193
11-11 Biscayne Aquifer reclamation injection well location, 193
11-12 Biscayne Aquifer reclamation water movement after injection, 194
11-13 Schematic of treatment process, 194
11-14 Location of the Water Reclamation Plant, 195
11-15 Aquifer recharge, 196
11-16 Aquifer recharge via flooding, 197
11-17 Aquifer reclamation to prevent upconing, 197
This page intentionally blank.
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-1</td>
<td>Selected values of porosity, 65</td>
</tr>
<tr>
<td>5-2</td>
<td>Selected values of porosity, specific yield, and specific retention, 66</td>
</tr>
<tr>
<td>5-3</td>
<td>Approximate height of capillary rise h_c in granular materials, 71</td>
</tr>
<tr>
<td>5-4</td>
<td>Drawdown test data for observation wells, 82</td>
</tr>
<tr>
<td>5-5</td>
<td>Allowable interference drawdowns for various pumping rates, 88</td>
</tr>
<tr>
<td>6-1</td>
<td>Velocity-head data, 100</td>
</tr>
<tr>
<td>6-2</td>
<td>Friction loss for water in ft per 100 ft (Schedule 40 Steel Pipe), 102</td>
</tr>
<tr>
<td>6-3</td>
<td>Equivalent length of new straight pipe for valves and fittings for turbulent flow only, 106</td>
</tr>
<tr>
<td>6-4</td>
<td>Maximum practical suction lift, in feet, for single-stage centrifugal pump, 109</td>
</tr>
<tr>
<td>6-5</td>
<td>Air requirements for airlift pumps, 115</td>
</tr>
<tr>
<td>8-1</td>
<td>The principal natural chemical constituents in water, concentrations, and effects of usability, 150</td>
</tr>
<tr>
<td>8-2</td>
<td>Maximum contaminant levels for a variety of organic and inorganic chemicals, 157</td>
</tr>
<tr>
<td>8-3</td>
<td>Regulated pesticides detected in groundwater, 161</td>
</tr>
<tr>
<td>8-4</td>
<td>Summary of pharmaceutically active substance occurrence, 163</td>
</tr>
<tr>
<td>8-5</td>
<td>Major sources of groundwater contamination, 163</td>
</tr>
</tbody>
</table>
This page intentionally blank.
Foreword

The revision to Manual M21 is the culmination of nearly five years of effort by members of the Groundwater Committee. This edition has been written to provide the reader with a general understanding of the principles involved with groundwater, its movement and character, and the subsequent impact these characteristics have on the design, construction, and maintenance of groundwater well systems for water utilities. The contents of this edition are substantially different and more extensive than prior editions for several reasons. First, groundwater protection, planning and evaluation efforts have evolved in the past 10 years. Modeling has evolved as well, to the point where many consumptive use projects include a modeling exercise. New uses of groundwater, such as aquifer storage and recovery, and new legal issues with interbasin transfers have evolved as well. The committee also endeavored to make this edition more readable.

The result is the third edition, published some 13 years after the last edition of the manual. The intention was to create a document that provides a general overview, without the detailed mathematical analyses that are available in many other groundwater texts. This manual hopefully will provide operators and engineering staff with an understanding of groundwater principles that will help them make decisions on design, installation, phasing, and repair needs when problems or the need to expand supplies arise.

Scope

Chapter 1 is an overview of the occurrence and behavior of groundwater, including the geology, hydrologic cycle, and aquifer characteristics that define groundwater flow.

Chapter 2 is an overview of the process to evaluate aquifers and water quality to allow engineers, hydrogeologists and administrators to make decisions on aquifer use. Aquifer tests to define water availability and quality are also presented.

Chapter 3 is an extension of chapter 2 that covers the areas of groundwater protection and management, like source water protection efforts and land use controls.

Chapter 4 outlines the type and construction of wells that can be used for water supplies for utilities.

Chapter 5 demonstrates the use of the standard groundwater equations to evaluate wellfields and develop computer modeling. An outline of common modeling software is included.

Chapter 6 describes the types of pumps used in well applications, maintenance requirements, pump problems and solutions to those problems.

If wells are constructed as discussed in chapter 4, they should be operated, as defined in chapter 7, and the problems likely to be encountered, as well as plugging and fouling problems and their correction, are also discussed. Microbiological fouling is a major topic discussed in detail in this chapter, as it has been found to be a major issue throughout the world, albeit one that is not commonly understood.

Chapter 8 presents issues associated with water quality and contaminant transport resulting from organic, inorganic, and bacteriological pollution; the methods to test and monitor these problems; and treatment methods to maintain the water supply quality and reduce maintenance costs.
Chapter 9 summarizes water treatment issues arising from groundwater sources. The discussion is not meant to be exhaustive of the treatment options available but is instead intended to describe common treatment options that the operators, engineers, and administrators of water supply agencies should be aware of.

Chapter 10 discusses the record-keeping used with wells and wellfields systems. These records provide utility personnel with insight into the occurrence of problems and long-term trends.

Chapter 11 presents emerging groundwater technologies such as aquifer storage and recovery, artificial recharge, and salinity barriers.

This manual should help operators and engineers gain enough background on the subject of groundwater to improve their decision making. The manual should help these professionals answer many of their questions about complex aquifer systems and improve their response to problems. The Groundwater Committee is hopeful that the new edition will meet the industry needs of the new millennium and will be as useful as the prior editions have been.

Frederick Bloetscher, PhD, PE
Chairman, AWWA Groundwater Committee
This manual was developed by the AWWA Groundwater Committee. The membership at the time it approved this manual was as follows:

Frederick Bloetscher, (Chair), Consultant, Hollywood, Fla.
L. Anderson, Metro Water District of Southern California, Los Angeles, Calif.
G.A. Bates, Dames and Moore, Sacramento, Calif.
D.V. Bohnenberger, El Dorado Irrigation District, Placerville, Calif.
R.W. Caswell, LaMoreaux & Associates, Laconia, NH.
L.C. Fowler, Consulting Manager, Santa Cruz, Calif.
F.J. Getchell, Leggette, Brashears & Graham, Inc., Ramsey, N.J.
C. Haas (Staff Advisor), AWWA, Denver, Colo.
H.C. Hunt III, Project Manager, Gahanna, Ohio.
T.J. Miller, CH2M Hill Consulting Engineers, St. Louis, Mo.
A. Muniz, Hazen & Sawyer, Boca Raton, Fla.
C.E. Nuzman, Consultant, Silver Lake, Kan.
D.L. Rich, City of Battle Creek, Battle Creek, Mich.
E.W. Sanderson, EJ Water Corporation, Urbana, Ill.
E. Shafer, Suburban Water Systems, Covina, Calif.
S.A. Smith, Smith-Comeskey, LTD., Ada, Ohio.
R.E. Zegers, Las Vegas Valley Water District, Boulder City, Nev.
Chapter 1

The Occurrence and Behavior of Groundwater

This chapter provides a general overview of

- the hydrologic cycle
- the general terminology used by engineers and hydrogeologists to describe aquifer systems
- general groundwater concepts
- the interrelationship of groundwater and various geologic formations with surface water, precipitation, and drainage patterns
- the impact of groundwater on water supplies

Because groundwater and surface water resources are closely related, any event that occurs aboveground can impact an underground water supply. As a result, water supply agencies need to monitor surface events, such as rainfall, spills, accidents, development, and drought to determine the potential impact on their water systems, as discussed throughout the manual.

HYDROLOGIC CYCLE

All living things depend on water for survival. Of the total water found on earth, 97.3 percent is saltwater in the oceans. Of the remaining water, over two thirds exists as ice in the polar caps. The rest, or 0.61 percent of all water, is fresh water in lakes, rivers, streams, and groundwater.

The constant movement of water above, on, and below the earth's surface is defined as the hydrologic cycle and is depicted in Figure 1-1. From oceans and seas, to clouds, to precipitation, to streams and lakes, to groundwater and back to the oceans, water travels through the hydrologic cycle, conditioning and shaping all that it touches. The hydrologic cycle is the main concept used in the
development and management of water supplies. The components of the hydrologic cycle are

- evaporation and transpiration
- precipitation
- surface water and runoff
- groundwater

Evaporation and Transpiration

Although the hydrologic cycle is continuous and has neither a beginning nor an end, evaporation and transpiration will be discussed first in this manual. These two processes are commonly combined and referred to as the process of evapotranspiration. Evapotranspiration is the process of water vapor entering the atmosphere both through water that evaporates from open water bodies and water that transpires from vegetation or other sources. Evapotranspiration rates vary, depending largely on the amount of solar radiation, the latitude of the catchment area, heat, water surface, and vegetative cover. Areas close to the equator tend to have higher evapotranspiration rates as shown in Figure 1-2. In subtropical areas during the wet season, or during summer months in northern latitudes, large bodies of water, including wetlands and estuarine areas, have high evaporation rates. This rising moisture forms clouds that condense and return the water to the land surface or oceans in the form of precipitation. Open water of shallow depth has the highest evaporation rate. Water as far as four feet below the surface may be subject to evaporation.
To grow, plants must continually absorb water through their roots and circulate it up through their leaves. Water vapor evaporates from the plant through transpiration during photosynthesis. For plants that grow in swampy environments, the quantity of water lost is significant. On average, evapotranspiration during the summer months offsets a good portion of the rainfall. Figure 1-3 shows a comparison of evapotranspiration rates and rainfall in South Florida.
Precipitation

Precipitation occurs in several forms, including rain, snow, and hail. Water vapor from evapotranspiration condenses to form cumulus clouds. As the amount of water vapor increases, the clouds combine and form anvil-topped thunderclouds. When the condensed vapor exceeds the holding capacity of the atmosphere, the moisture is released as rain in thunderstorms or other forms of precipitation. The rain wets vegetation and other surfaces, then infiltrates into the ground. Infiltration rates vary widely, depending on land use, development, the character and moisture content of the soil, and the intensity and duration of the precipitation event. Infiltration rates can vary from as much as 1 in./hr (25 mm/hr) in mature forests on sandy soils, to almost nothing in clay soils and paved areas. Figure 1-4 shows intensities that occur in the continental United States. If and when the rate of precipitation exceeds the rate of infiltration, overland flow, or runoff, occurs. Figure 1-5 shows average annual precipitation in the United States.

Surface Water

Precipitation that runs off the land, reaching streams, rivers, or lakes, or groundwater that discharges into these water bodies is surface water. Surface water bodies that mix with saltwater bodies along the coast are called estuaries; for example, where a river meets the ocean in a delta. Surface water flow is controlled by the topography because the water generally flows toward the oceans.

Figure 1-4 One-hour rainfall (inches) to be expected once on average in 25 years
The following terms are used to explain the concepts found in this chapter and throughout the remainder of this manual:

Anisotropic aquifer is one in which the aquifer formation does not transmit water equally in all directions (i.e., the horizontal and vertical permeability are not equal, causing the water to move preferentially in one direction with respect to the other two).

Aquiclude is a low-permeability geologic unit that forms either the upper or lower boundary of a groundwater flow system. Clay is a typical aquiclude material.

Aquifer is a geologic formation, or part of a group of formations, that is saturated and sufficiently permeable to transmit economic quantities of water to wells and springs.

Aquifer storativity is the volume of water added to a unit horizontal area of the aquifer, per unit rise in the water table elevation (i.e., the ability of the aquifer to increase its capacity to store water).

Aquitard is a low-permeability geologic unit that can store groundwater and also transmit it slowly from one aquifer to another. A leaky aquifer formation may be an aquitard.

Effective pore space is an indication of how much of the void space within the rock or soil is capable of transmitting water. This is important because some rock formations may have considerable pore (or void) space, but because the pores are not interconnected, the rock or soil may have difficulty transmitting water.

Evaporation is the transformation of water from the liquid phase to a vapor phase in the atmosphere.

Evapotranspiration is the combination of evaporation and transpiration. Water less than 4 ft below the ground surface may be subject to evapotranspiration.
Groundwater is defined as water contained in interconnected pores located either below the water table in an unconfined aquifer or in a confined aquifer.

Hydraulic conductivity is a measure of the ease with which fluid is transported through a porous matrix (also called coefficient of permeability).

Hydraulic gradient is a measure of the vertical change of the aquifer over a given distance from a stationary base (i.e., the slope of the aquifer formation).

Hydrologic cycle is the movement of water in the environment wherein water falls to the surface as rainfall, runs off over land to water bodies and/or infiltrates into the groundwater via percolation, and returns to the atmosphere via evaporation/transpiration, then returns as rainfall. This is best demonstrated in Figure 1-1.

An isotropic aquifer is one in which the formation transmits water equally in all directions within the aquifer formation.

Piezometric surface is the level to which water will rise in an aquifer under natural conditions. In a water table aquifer, the piezometric surface is the water table level. In a confined aquifer, the piezometric section may be significantly above the top of the rock formation: the aquifer is under pressure. Artesian wells are confined aquifers with the piezometric level above the ground surface, meaning that water could flow to the surface unaided.

Potential evapotranspiration is the amount of evapotranspiration that would occur, assuming the soil moisture was adequate at all times. During drought conditions this will not occur, and so actual evapotranspiration may be less. Because of the disparity between the rainfall throughout the year, the actual evapotranspiration in the winter months is less.

Specific discharge potential is the amount of water that an aquifer could discharge given its hydraulic conductivity and piezometric head.

Transmissivity is the aquifer characteristic which is defined by the rate of flow per unit width through the entire thickness of an aquifer per unit gradient. This is valid only in two-dimensional flow.

Transpiration is the process in which plants absorb water from the soil and release it to the atmosphere through their leaves.

Viscosity combines with the fluid density to form kinematic viscosity, which is important in determining the hydraulic conductivity of the soil or rock matrix.

Void space is the pore space within the soil or rock matrix that does not contain solid material.

GROUNDWATER CONCEPTS

The quantity and quality of groundwater depends on factors such as depth, rainfall, and geology. For example, the flow velocity and flow direction of groundwater depends on the permeability of soil and rock layers, and the relative pressure of groundwater. A one-mile-square area 20-ft thick with a 25 percent porosity (or available space in the soil) would hold one billion gallons of water. The main concepts and factors related to groundwater include infiltration and recharge, unsaturated and saturated zones, and aquifers and confining beds. These are discussed in the following paragraphs.

Infiltration and Recharge

Precipitation that percolates downward through porous surface soils is the primary source of water for groundwater. Surface areas having this downward flow are called “recharge areas.” The characteristics of soil depend on the parent material, the climate, the types of organisms in and on the soil, the topography of the land, and the amount of time these factors have acted on the material. Because vegetative types
differ in their nutrient requirements and in their ability to live in water-saturated or saline areas, soil types also play a role in determining plant distribution.

Soil has the capacity to absorb some moisture initially, a factor called “initial infiltration.” Initial infiltration replaces moisture in the root or plant zones, where the roots for most vegetation exist. Because of the variable permeability and transmissivity of different soils, the rate of groundwater recharge from precipitation will vary. Recharge areas for deeper groundwater can be located far from the point of use. For an aquifer to have fresh water, there must be a source of recharge, some degree of flow (albeit slow), and a discharge area (to cause the flow). Otherwise, if there were no recharge or movement, the aquifer would become brackish through dissolution of the minerals in the rock.

Unsaturated and Saturated Zones

After precipitation has infiltrated the soil, it will travel down through two zones. The unsaturated zone, which occurs immediately below the land surface in most areas, contains water and air. The unsaturated zone is almost invariably underlain by a zone in which all interconnected openings in the ground are full of water. This zone is referred to as the saturated zone and is illustrated in Figure 1-6.

Water in the saturated zone, technically called “groundwater,” is water that can be pumped or surfaces in natural springs. Recharge of the saturated zone occurs by percolation of water from the land surface through the unsaturated zone. This zone may be divided usefully into three parts: the soil zone, the intermediate zone, and the upper part of the capillary fringe.

Soil zone. The soil zone typically extends from the land surface to a maximum depth of 3 to 5 ft (1 to 2 m). The soil zone supports plant growth, and it is crisscrossed by living roots, voids left by decayed roots of earlier vegetation, and animal and worm burrows. The porosity and permeability of the material in this zone tend to be higher than the porosity and permeability of the ground beneath it.

Intermediate zone. Below the soil zone is the intermediate zone, which differs in thickness from place to place, depending on the thickness of the soil zone and the depth to the capillary fringe. The intermediate zone is less porous than the soil zone since few roots or burrows penetrate it.

Capillary fringe. The capillary fringe is the subzone between the unsaturated and saturated zones. The capillary fringe occurs when a film of water clings to the surface of rock particles and rises in small-diameter pores against the pull of gravity. Water in the capillary fringe and in the overlying part of the unsaturated zone is under a negative hydraulic pressure, that is, less than atmospheric (barometric) pressure. The water table is the water level in the saturated zone at which the hydraulic pressure is equal to atmospheric pressure. Below the water table, the hydraulic pressure increases with increasing depth.

Aquifers and Confining Beds

Below the unsaturated soil zone, all rocks (including unconsolidated sediments) under the earth’s surface can be classified either as aquifers or as confining beds. An aquifer is rock that will yield water in a usable quantity to a well or spring. Some of the groundwater pumped has been stored in aquifers for hundreds or even thousands of years. A confining bed is rock having very low hydraulic conductivity that restricts the movement of groundwater either into or out of adjacent rock formations as shown in Figure 1-7.
Groundwater occurs in aquifers under two different conditions. Near the land surface, water only partly fills an exposed aquifer. The upper surface of the saturated zone is free to rise and decline in direct relation to precipitation. The water in this type of aquifer is unconfined, and the aquifer is an unconfined, or water-table aquifer. Wells that pump water out of unconfined aquifers are water-table wells. The water level in these wells indicates the position of the water table in the surrounding aquifer.

Clay layers are generally impervious formations, meaning water cannot flow through them easily. The ability of water to flow through the soil is referred to as transmissivity. Clay has very low transmissivity. Water will tend to flow preferentially where the resistance is lowest, and therefore clay is rarely the “preferred” route. Often, a clay layer will intercept or overlay portions of an aquifer. Wells drilled into the aquifer through the clay layer can flow at the surface when the aquifer’s static level is higher than that of the top clay layer. This flow is called “artesian flow.” When the well is pumped, the level of the aquifer falls as the water immediately surrounding the well is drawn through the pumping well. The falling level is called “drawdown,” and the three-dimensional cross-section is called the “cone of depression.” If the aquifer transmits water easily (i.e., has high transmissivity), the drawdown is slight and the cone of depression is flat and widespread as depicted in Figure 1-8. If the aquifer has low transmissivity, drawdown is significant and the cone of depression is steep. The higher the rate of flow, the steeper the drawdown and the larger the cone of depression. The cone of depression is also affected by the level of water within the aquifer. Therefore, the types of rock strata that underlie the area have significant bearing on the quality and quantity of groundwater available and the ability of the rocks to absorb and store water.
Figure 1-7 Geologic configuration of aquifers and confining beds

Figure 1-8 Development of a cone of depression
Where water completely fills an aquifer that is overlain by a confining bed, the water in the aquifer is said to be confined. Such aquifers are referred to as confined or artesian aquifers. Wells drilled into confined aquifers are referred to as artesian wells. If the water level in an artesian well stands above the land surface, the well is a flowing artesian well.

Under natural conditions, groundwater moves downhill until it reaches the land surface at a spring or through a seep along the side or bottom of a stream channel or estuary, or, in deeper aquifers, the ocean. Groundwater in the shallowest part of the saturated zone moves from interstream areas toward streams or the coast. In many areas, the direction of groundwater movement can be derived from observations of land topography when the land slopes toward water bodies. Thus, the water table usually replicates the land surface as shown in Figure 1-9.

In confined aquifers, the water level is the “potentiometric” surface. Shallow confined aquifers, which are relatively common along the Atlantic Coastal Plain, may share both recharge and discharge areas with the surficial unconfined aquifers. However, this sharing may not exist in deeper confined aquifers, where the principal recharge areas are generally in outcrop areas that are not near the location of the deep aquifer. Along the Atlantic Coastal Plain, the recharge area occurs near the western border of the Coastal Plain. The discharge areas for deeper confined aquifers are generally near the heads of estuaries that occur along major streams or the ocean. Thus, water usually moves through these aquifers toward large, deepwater bodies, such as an ocean, where it is not otherwise modified by groundwater withdrawals.

In the western part of the contiguous United States and especially in the alluvial basins region, conditions are more variable than those described above. In this area, streams flowing from mountain ranges onto alluvial plains lose water to the alluvial deposits. Thus, groundwater in the upper part of the saturated zone flows down the valleys and at an angle away from the streams.

Figure 1-9 Groundwater movement as it relates to topography

The alluvial basins region occupies a discontinuous area that extends from the Puget Sound–Willamette Valley area of Washington and Oregon to west Texas. This region consists of alternating basins or valleys and mountain ranges.
LAND SUBSIDENCE

A significant consequence of groundwater development can be downward movement of the land surface, called subsidence. Subsidence can occur when the groundwater, which exerts pressure on the adjacent soil and rock, is removed, relieving the pressure. The formation then collapses, causing the surface topography to be altered. Development of groundwater needs to include consideration of possible land-surface subsidence. In some areas, clays such as montmorillonite may exist beneath the surface, causing significant problems for water purveyors. These clays can be 46 to 55 percent porous, with their structure supported by the internal pore pressure of water. As pore pressure is reduced when water levels decline, most of the compression occurs in the clay units, causing land subsidence.

Estimating Subsidence

The magnitude of subsidence in areas subject to flooding either by tidal inundation or alteration of surface drainage should be estimated, especially in aquifers with high clay or sand content, or where prior subsidence has been noted. Subsidence along faults (activation or acceleration) that could lead to structural damage must be estimated.

The most readily available of the necessary data is the amount of compressible material in the subsurface. Such data may be obtained from evaluation of logs of well test holes. Data on water-level changes can be used to make estimates of pressure change (stress change) at various depths for various time intervals. Where subsidence has been well documented, subsidence data may be coupled with the amount of compressible material to determine compressibility. Unfortunately, the information needed is not available in sufficient detail in most areas.

Data on the degree of compressibility of the subsurface material are less readily available than either of the other factors used to predict subsidence. Laboratory values of compressibility determined from tests of cores have been used with limited success as a result of the expense of obtaining undisturbed cores, and the difficulty in obtaining representative cores preclude their use for regional appraisal.
This page intentionally blank.
Chapter 2

Evaluation of Regional Groundwater Conditions

Three steps are used in identifying potential water sources for a public water supply. The first is identifying regions having low pollution potential, high recharge capability, and a favorable location to the utility and its customers. The second step is performing field investigations to confirm site-specific characteristics. The third is dealing with land use and wellhead protection issues (which are discussed in chapter 3).

The evaluation of regional groundwater conditions and the potential for resource development should be based on the following factors:

- The quantity and quality of water required
- The availability of water resources within the vicinity of the regional demand, including the sustainable yield of the potential source aquifers
- The cost to develop the water supply for the region
- The nature and density of existing or likely future pollution sources within the recharge area of an aquifer, and the effectiveness of regulatory controls on these sources
- The amount of previous groundwater development and availability of hydrogeologic or groundwater pollution investigations
- Long-term land uses affecting quality and quantity of groundwater recharge
- Conveyance costs and treatment required for specific development projects

Additional factors include the following:

- Legal issues, such as water rights, adjudications, water transfers, and conjunctive use commitments
- Financial issues, such as taxation on pumping to pay for groundwater replenishment
GROUNDWATER

- Environmental concerns, such as for endangered species and critical habitat
- Resource management issues, including potential for recycling and conservation

IDENTIFICATION OF SUITABLE GROUNDWATER SUPPLIES

In the past, groundwater was typically assumed not to be affected by surface activities. These perceptions of purity have created expectations of consistently reliable groundwater sources. Unfortunately, groundwater sources cannot be assumed to be safe. In 1969, a national study of 1,000 potable water systems found that more than a quarter of the wells associated with those systems were contaminated by pollutants ranging from minerals to solvents and other hydrocarbons, sometimes to the point of making groundwater supplies unsuitable for drinking water. These problems led directly to the passage of the Safe Drinking Water Act.

Water Quality Considerations

Traditionally, the materials that have affected the value of a groundwater supply have included naturally occurring minerals, such as dissolved inorganic salts. High quantities of minerals means low-quality water. A significant relationship exists between mineral quality and depth of groundwater: the mineral quality of groundwater generally declines with depth, at least in deeper zones. Groundwater quality in many sedimentary basins, where the older and deeper sediments were deposited by oceans, can change very abruptly in mineral content. Poor-quality water can be drawn upward after production begins (“upconing”), even if a production well does not penetrate a saline zone. Similarly, operation of coastal production wells can induce saltwater intrusion into freshwater aquifers. Therefore, drilling deeper is not the solution to the problem of severe mineralization.

Today, many forms of contamination exist. Synthetic and naturally occurring organic compounds, plus refined minerals and heavy metals, must be considered when evaluating the development potential of a groundwater resource. Microbiological substances, especially in membrane treatment applications, are increasingly a concern. In many cases, construction, maintenance, and operation of facilities to remove these substances is more costly than finding a new water source.

Pollution control. The types of waste generated within local areas, methods of handling and disposing of the waste, the likelihood of accidental or unreported spills and leaks, and the hydrogeology of intervening materials are important when evaluating groundwater quality. All groundwater supplies should be analyzed for potential pollution contamination.

Land Use

Agricultural use of land can affect groundwater quality because of pesticide, herbicide, and waste runoff. Residential land uses with septic tanks may pollute groundwater with household chemicals, microbiological contaminants, salts, and nitrates. Historical land use practices must be reviewed. Potential development and impacts of that development should also be considered. The existence of private property rights laws in many states may frustrate utility efforts to protect water sources without significant cost for land acquisition. Wide-scale testing for contaminants throughout a proposed wellfield is required by federal, state, and local regulations. Pollution source areas, especially capture zones and those that are currently upgradient of the proposed water supply site are of utmost concern.
As land uses change, an aquifer with near pristine quality at the time of development may deteriorate. Consequently, water resource professionals must obtain and maintain a good understanding of urban and industrial growth and zoning of the area associated with the groundwater supply. Today, simulation models can depict the long-term effects of a proposed water-well development and provide documentation of any land-use changes that may affect the local hydrology. Examples are industrial development displacing irrigated agriculture or paving from urbanization that reduces recharge. This modeling can take the form of analytical solutions for simple cases or numerical computer codes for more complex cases where a high degree of accuracy is needed.

Because of a lack of certainty about flow patterns and possible changes in flow patterns, judgment is required for all methods of groundwater modeling. In addition, flow of discharged material in the unsaturated zone is not governed by groundwater gradients, and contaminants can move contrary to prevailing groundwater flow. Groundwater development should be upgradient or downgradient at an appropriate distance from potential threats to the water quality. Testing for pollutants at greater frequency may be appropriate, and establishing early-warning monitoring wells at various depths may be required to maintain groundwater quality.

Published Reports

Utility-commissioned reports from existing public suppliers, reports from local drillers, and published reports from government agencies such as the US Geological Survey (USGS) are good sources to use when analyzing groundwater conditions. While drillers’ logs and well-completion details can be confidential, a utility may be able to negotiate access to these records for specific projects.

Published reports on groundwater resources are available, covering various geographic regions, including major basin areas and state, county, and local regions. For studies within the United States, a good place to begin the literature search is the Summary Appraisals of the Nation’s Ground-Water Resources (1978–1982). An individual report covering the region of interest can be obtained separately, or a compilation of all twenty reports is offered by Todd (1984). These reports provide a summary of the quantity and quality of available groundwater. By examining the supporting references that are cited for specific localities, data can be arranged into a composite array.

Valuable information regarding contamination sources may be obtained from state and federal programs that administer hazardous waste or effluent programs. These programs monitor groundwater quality as preliminary steps before granting operating permits for groundwater wells. A local hydrogeologist will likely have a significant amount of information on water quality parameters and drilling conditions.

Caution should be used in any investigation because even fairly site-specific reports are necessarily general in nature, and many local details may be omitted. Local conditions may differ from the regional average, and if good prospects for resource development are rare, one may have to explore areas that do not at first appear attractive in the general reports. Also, water quality can change with time (especially in the shallower groundwater zones), and site specific variations will not appear in the published literature. Therefore, some exploratory work will have to be done to provide needed details regarding water quality.

Existing Water Rights

The development of new wellfields should be shown to not infringe on existing water rights or competing water uses. The water developer should be able to demonstrate “sustainable yield” and also show that the side effects of pumping, such
as land subsidence or saltwater intrusion, or interference with competing water or competing land users would be negligible. Often this can be accomplished via computer modeling by using a program such as USGS’s MODFLOW program. These models also can be used to demonstrate to regulatory agencies that proposed drawdowns will not be detrimental to the environment or adjacent users, or exceed the drawdowns set by regulation. Aside from the investigation of the hydrogeology, water quality should also be considered. Computer programs are also available for use in conjunction with water quality analyses.

Changes Affecting Evaluation

Changes in economics may influence local officials to develop more groundwater resources or the public to demand higher quality water. These changes may be at odds with the utility provider’s aquifer protection programs or make public relations efforts difficult. Consequently, reliable measurements must be obtained when evaluating any groundwater system.

Deterioration of water quantity and quality can have grave consequences for those dependent on the water resource in the form of higher treatment costs or abandonment of the wellfield. However, changes other than those measured in the field can often be of great concern. Perceived changes may be caused by the availability of improved analytical methodologies (which detect levels of compounds not previously measurable or of new chemicals); regulatory priority shifts toward or away from protection of natural resources, including aquifer classifications; new toxicological data or reinterpretation of existing toxicology; or the integration of facts regarding groundwater quality into conservative measures toward the safe use of all water resources.

FIELD METHODS FOR LOCATING SUITABLE GROUNDWATER SUPPLIES

The goal of groundwater exploration is to locate productive aquifers that yield sustainable high-quality water. The production level and quality required will guide exploration efforts, but interest will generally center around locating large deposits of the following:

- Unconsolidated sands and gravels of alluvial or glacial origin
- Sandstones and conglomerates
- Limestones and dolomites
- Porous or fractured volcanic rocks

Many other types of rock can yield small quantities of water to meet the domestic needs of a single household on its own well.

Depending on the region, the starting place of the exploration effort will vary. In undeveloped regions, reconnaissance-type interpretation of aerial photos and maps may be the first step. Infrared photos of land use, foliage patterns, foliage types, and water bodies may serve as an indicator of recharge efficiency. Areas having the greatest surface-drainage capacity (i.e., paved areas) will have the least amount of groundwater recharge and may or may not overlie significant groundwater resources. Cross-sectional maps may have to be drawn from surface geologic information and existing well logs. These maps will aid in determining the location, depth, and thickness of favorable aquifers.
In many regions, general cross-sections and hydrogeologic interpretations will already exist, along with well logs and production information from existing wells. In these cases, favorable aquifers will have already been identified, and exploration efforts can fill in the details of the local hydrogeologic environment. Surface geophysical methods, borehole geophysical methods, aquifer testing, exploratory drilling, and lithologic logging are the most common methods used to accomplish these efforts.

Surface Geophysical Methods

Surface geophysical methods, principally electrical resistivity and seismic reflection and refraction, can be used to provide a more complete picture of subsurface structure, given some prior knowledge obtained from surface geology and borehole logs. A general model of the subsurface geology should be developed to provide the basis for a proper interpretation of the surface geophysical data. The information generated can be used to locate sites for further investigation with test drilling. In circumstances of well-defined subsurface geology and well-documented groundwater movement, contaminant plumes may be projected using geophysical methods of measurement.

Successful application of any surface geophysical method depends on the presence of distinct changes in the physical properties. The detectable physical properties provide only indirect estimates of the hydrogeologic properties, with the accuracy of such estimates depending on how closely these physical properties relate to each other. In addition, the structural configurations amenable to investigation must be relatively simple to separate from one another. A comprehensive reference on the use of surface geophysical methods for groundwater investigations is given by Zohdy, Eaton, and Mabey (1974).

Land parcels that often do not lend themselves to surface geophysical methods include areas consisting of large cobbles in alluvium, areas of severely distressed geology, or areas in which (in geologic time scale) high hydraulic energy was dissipated.

Electrical resistivity. Electrical resistivity is probably the most commonly used surface geophysical method for groundwater investigations. It is economical to apply, and it produces useful information.

In the direct-current resistivity method, electrodes placed into the ground transmit current through the earth, and voltage potential is measured between two points near the center of the generated field. Figure 2-1 schematically illustrates the most common electrode arrangements—the Schlumberger array and the Wenner array. Sets of resistivity readings can be gathered along the transect with constant electrode spacing (horizontal profiling) or at one location with expanding electrode spacing (electrical sounding). The first method will show apparent resistivities of materials at roughly the same depth along the transect, while the second method produces a depth profile of resistivity.

Electrical resistivity is strongly affected by water content, thus interpretations involving the unsaturated zone are quite difficult as a result of the undefined distribution of moisture. In the saturated zone, resistivity is largely determined by the rock-matrix density and porosity, or by the saturating-fluid salinity (electrical conductivity).

Holding other factors constant, coarse sediments with low clay content will have higher resistivity than fine-grained sediments. This difference in resistivity makes it possible to map buried stream channels or perform depth profiling of shale–sandstone sequences. Such changes in mineral quality are detectable because of the relation between dissolved solids and electrical conductivity. Resistivity values for earth materials range over more than 16 orders of magnitude, and resistivity surveys can provide useful results in most environments with simple geologic structure and distinct resistivity contrasts.
Electrical resistivity may be used in existing or new well fields that require evaluation of suspect chemical migration from a polluting source. Plumes of discharged chemicals commonly have a relatively high dissolved-solids content. The boundaries of such plumes may be mapped with resistivity surveys, under the proper conditions.

The Schlumberger and Wenner arrays (see Figure 2-1) provide the simplest interpretation for measuring resistivity. The apparent resistivity R_a is given by

$$R_a = \frac{2\pi a V}{I}$$

(2-1)

Where:

- a = the electrode spacing
- V = voltage
- I = direct current

The apparent resistivity characterizes a volume of earth extending below the electrode array to some effective depth of penetration. The depth of penetration is related to the electrode spacing. For the Wenner array, the effective depth of penetration is commonly assumed to be equal to a. However, this assumption can lead to serious errors in calculated depths. The depths to horizontal boundaries are best determined by matching the theoretical apparent resistivity and electrode spacing curves of various model conditions to the curves obtained from field measurements. The Schlumberger array...
provides better resolution of subsurface features but is slightly more difficult to analyze. Interpretations should be performed by a trained analyst familiar with local conditions.

The resistivity method is generally limited to use in simple geologic environments with two or three distinct layers and where depth of penetration is limited to about 1,500 ft (460 m). Best results are obtained when the depth to groundwater is small, due to the complications of unsaturated materials. Also, the method is less effective in urban areas where the presence of buried metal pipes, wires, and similar obstructions can dominate measurements with unwanted noise.

Other surface geophysical methods that fall within the electrical methods category include telluric, magneto-telluric, electromagnetic, and induced polarization methods. However, their use is not generally applicable to groundwater supply investigations. Electromagnetic methods have become popular for shallow groundwater investigations, especially those involving groundwater contamination. The results are similar to those derived from the direct-current resistivity method, although resolution is poorer and exploration is generally limited to the upper 180 ft (55 m). The method has received attention because it involves no direct contact with electrodes, making it quick and easy to apply in the field. The other methods mentioned have some application in specialized research and are discussed by Zohdy, Eaton, and Mabey (1974).

Seismic refraction and reflection. Seismic methods are perhaps the most useful geophysical tools for hydrogeologic investigations, although costs are relatively high. Seismic methods use contrasts in the velocities of elastic wave propagation between different earth materials. For example, unconsolidated sands and gravels exhibit low propagation velocities, whereas crystalline rocks exhibit the highest propagation velocities. Propagation velocities are higher in saturated materials, providing for detection of the water table.

Elastic waves are commonly initiated with the use of explosive “shots” in shallow borings, although the use of truck-mounted hydraulic earth vibrators (thumpers) is fairly widespread. Lines of geophones are laid out on the ground surface to detect waves refracted or reflected from various subsurface discontinuities to measure travel time. Travel time records can then be analyzed to produce a picture of the subsurface. As with all surface geophysical methods, the interpretation of seismic data requires an assumed model of subsurface structure; the more preexisting information from surface geologic data and borehole logs that is available, the more reliable the results from seismic surveying will be.

Reflection and refraction are two methods of seismic exploration. Seismic reflection is preferred for petroleum exploration and is the most widely used method. The cost and complexity of equipment and analyses required to apply the reflection method is greater than that required for the refraction method. However, for deep exploration in multilayered environments, the reflection method is generally superior.

Seismic refraction is the only method that has been commonly applied in groundwater investigations. Besides cost considerations, this method can have advantages in environments where deep alluvial or glacial fill exists. Less knowledge is required to apply refraction seismology, and good results can usually be achieved in most groundwater investigations. The most severe limitation of seismic refraction is that return signals can only be obtained as long as each successively deep layer has a higher propagation velocity than the overlying layer. In areas of scarce water, where water wells are drilled to great depths (for example, parts of the arid southwestern United States), this limitation may prove too restrictive, and the higher cost of seismic reflection may be warranted.

Figure 2-2 shows the use of the seismic refraction method for reconnaissance mapping of the depth to bedrock and the location of a buried stream channel. Seismic refraction can be used to determine the thickness of surficial fracture zones in
crystalline rock and to map the depth and thickness of subsurface layers, up to at least the equivalent of three layers. As in the resistivity method, the analyses become very difficult and the results less reliable for more than three layers.

As long as the geologic structure is simple, depths of a few thousand feet (600 to 700 m) can be explored with seismic refraction, given a sufficient explosive and deep shot. Seismic reflection can be used to gather information from more than 10,000 ft (3,000 m) deep. For small area applications, where only very shallow materials need to be explored, a sledgehammer struck on metal plate at ground surface might be sufficient to explore the first 1,000 ft (30 m).

Other methods. Other surface geophysical methods can be useful in groundwater investigations, although none have been widely used due to the low benefit-to-cost ratio associated with their use. Some relatively new methods, such as ground-penetrating radar, have proved useful in groundwater contamination studies; however, the depths of penetration may be too shallow for general use in water supply applications. Gravity methods and magnetic methods have been used for general hydrogeologic investigations, although they must be viewed as supplementary methods to be applied in situations where maximum information is desired and cost is not a limiting factor. These methods are discussed by Zohdy, Eaton, and Mabey (1974).

Borehole Geophysical Logging

Borehole geophysical logging has become a common tool in groundwater exploration. The technology of borehole logging is quite involved, and experts using special equipment are needed to perform the logging and interpretation. The discussion here introduces the capabilities and limitations of the logging tools found to be most useful in groundwater exploration. There are many texts on borehole logging, but the reader should be cautioned that most of these texts present information tailored for use in petroleum exploration. The presence of low or non-saline water in a formation mandates the use of special analyses for interpretation. For a detailed discussion of this subject, the reader is referred to Keys and MacCary (1971) or to Keys, *Borehole Geophysics Applied to Groundwater Investigations*, as published by the National Water Well Association (1989).

![Figure 2-2 Application of seismic refraction method for reconnaissance mapping](image-url)
There are many borehole logging techniques available, although electrical, naturally occurring gamma radiation, and caliper measurements are the most widely used. All geophysical log measurements are obtained by lowering a probe down the borehole and recording continuous measurements with depth. Logging is frequently performed during drilling operations, and quick analyses of the logs by qualified personnel provide the basis for decisions regarding well completion, including depth of casing and screened intervals. Some types of logs must be performed in an uncased well, while other logging can be done in cased wells, allowing data collection from existing wells.

Performing multiple logs in a single well will provide confidence in interpretations. Each type of log measures different physical properties, and combined analysis may resolve ambiguities that might exist from a single log. The greater the number of wells logged in an area, the greater the statistical confidence in the data and interpretations as being representative of the subsurface environment.

Determining the number of wells and the types of logs to be used in an investigation is often difficult. Most groundwater investigations obtain adequate information using caliper, resistivity, spontaneous potential, natural gamma, and lithologic logging. The cost of these techniques should be evaluated in the context of the time available, accuracy needed, and the basic purpose of the survey.

Caliper logging. Caliper logging is used to measure the diameter of the borehole. A probe that usually has either three or four levered arms is brought up through the hole, while a record of the depth and degree of extension of the arms is made at the surface. Four-armed probes can be used to measure the diameter of the hole in two directions and thus permit the evaluation of the asymmetry of the borehole. Caliper logs are of importance in groundwater exploration and well construction since the interpretation of other borehole geophysical logs requires data on the borehole diameter. Caliper logs can provide indications of the presence of high-permeability, fractured, or cavernous zones, as well as the occurrence of swelling clays and well lithified layers in friable or unconsolidated rock or sediment. Caliper logs are commonly run before the cementing of well casings to determine the volume of the annular space and to locate uniform diameter areas of boreholes in which to set cement baskets and packers.

Electrical resistivity logging. Electrical resistivity logging measures the apparent resistivity of the formations in a borehole. According to Ohm’s Law, resistance (ohms) is equal to potential (volts) divided by current (amperes). Electric resistivity logs use Ohm’s Law to determine the apparent resistance of the formations in the borehole. A current is applied between a downhole electrode and an electrode at the surface. The potential (voltage) is then measured between a downhole electrode and a surface electrode or between two or more downhole electrodes. Variations in the measured resistance are related to the composition of the rocks and sediments and the salinity of pore waters. Silt, clay, and shale tend to have the lowest resistivities; sands, sandstones, and limestones with non-saline pore waters have the highest resistivities.

The simplest and least expensive electric resistivity log is the single point resistance log, illustrated in Figure 2-3. The single point resistivity log measures the potential drop between a surface and downhole electrode, which are also the current electrodes. The single point resistivity log is used primarily for geological correlation and the location of bed boundaries, changes in lithology (rock characteristics), and fracture zones. Single point resistivity logs have a very good vertical resolution of lithologic changes but do not provide quantitative data on formation porosity or pore water salinity.

Separate current electrode and potential electrode(s) are located on the downhole probe in normal resistivity logs. Normal resistivity logs measure the apparent resistivity of a volume of the formation perpendicular to the borehole electrodes. The size
of the volume of investigation is proportional to the electrode spacing. The probes are commonly configured so that short normal (16-in. electrode spacing) and long normal (64-in. spacing) resistivities are measured simultaneously. Normal resistivity logs are commonly used in groundwater investigations as a source of qualitative information on water quality. True formation resistivity and salinity can be calculated from the measured apparent resistivities, but the calculations require the application of a number of correction factors, whose values are estimates. Other types of resistivity logs that are less commonly used in groundwater investigations are discussed by Keys (1989).

Spontaneous potential logging. Spontaneous potential (SP) logging was the first type of downhole, geophysical log. Spontaneous potentials are the naturally occurring electrical potentials that develop at the contacts between beds of different types of geological materials, such as between shale and sandstone beds. The SP logging apparatus consists of a surface and downhole electrode connected to a voltmeter. The SP logging equipment is usually incorporated in the electric resistivity log apparatus. SP logs provide information regarding geologic correlation, bed-thickness determination, and changes in lithology. Log definition depends on the contrast in fluid conductivity between the borehole and the geologic formation penetrated.

Gamma logs. Gamma logs record naturally occurring gamma radiation emitted by earth materials. The most significant natural resource of gamma radiation is the decay of the potassium-40 isotope and the daughter products of the uranium and
Thorium decay series. Rocks and sediments with relatively high concentrations of potassium, uranium, and thorium give high gamma ray counts. Clay-rich rocks, such as shales and phosphatic rocks in particular, give high gamma ray counts, whereas non-phosphatic limestones and dolostones and clean quartz sandstones tend to give low gamma ray counts. The gamma log is by far the most commonly used nuclear log and is very valuable for geological correlation and lithologic determination (note: it contains no nuclear material but measures background gamma radiation in the formation). The gamma log is useful because it can be run in cased walls.

Gamma-gamma logs. Gamma-gamma logs (also called radioactive tracer logs or surveys) are obtained by introducing a gamma radiation-emitting material into the borehole (usually cesium-137 or cobalt-60) and measuring the intensity of the back-scattered radiation. The back-scattered radiation detected by the probe is proportional to the density of electrons in the formation, which is in turn correlated with the bulk density of the rock. Gamma-gamma logs provide information on lithology and porosity. This log can also be used to locate cavities in the cement outside of a well casing. Gamma-gamma logs are widely used in the oil industry, but are not often used in groundwater investigations because of their high costs and the liabilities associated with the potential loss or rupturing of the radioactive source within the aquifer.

Neutron logging. Neutron logs are obtained by introducing a radioactive source that emits neutrons into the borehole. The emitted neutrons interact with hydrogen atoms and release gamma radiation, which is measured by a detector on a logging probe. The intensity of the measured gamma radiation is proportional to the hydrogen atom concentration and thus water content and porosity of saturated rocks. Neutron logs are widely used in the oil industry to determine the porosity and water content of formations and lithology. As is the case with gamma-gamma logs, neutron logs are not often used in groundwater investigations because of their high costs and the liabilities associated with the potential loss or rupturing of the radioactive source within the aquifer.

Acoustic logging. Acoustic or sonic logging involves the recording of transit time of acoustic pulses radiated from a probe in a borehole to one or more receivers also located on the probe. Transit times are related to matrix mineralogy and the porosity of the rock. Transit times decrease and acoustic velocities increase in sedimentary rocks with increasing hardness and cementation. Most rock types have a limited range of travel times, which allows for acoustic logs to be used to determine lithology. Porosity and fracturing can also be approximately determined from acoustic logs. The cement bond log is a type of acoustic log that is used to determine how well a casing has been cemented to the formation.

Fluid logs. Fluid logs include temperature, fluid resistance, and flowmeter logs. The probe used for temperature logs usually contains a glass bead thermistor. Temperature logs can be used to identify the boundaries of aquifer zones in boreholes because as water flows through permeable zones, the normal geothermal gradient will vary. Temperature logs can also be used to detect inter-aquifer flow either up the borehole or down the borehole, depending on the differential head pressure that is present. The presence of cement grout in the annular space of a well can be determined by running a temperature log within 24 hours of grouting because the heat of hydration of the cement raises the fluid temperature in the casing in cemented areas.

The fluid resistivity (or conductivity) probe contains two internal electrodes that measure the capacity of the borehole fluid to conduct electricity. The conductivity of a fluid increases with increasing salinity and temperature. A salinity versus depth profile can be constructed for an open borehole using the results of a temperature and fluid resistivity log. The calculated salinity versus depth profile is subject to considerable error because of the flow within the well.
Flowmeter logs are used to measure flow velocity within the wells. The most common construction is the impeller-type where the rate of rotation of the impeller is proportional to the relative flow velocity of the probe. The relative flow velocity includes the actual flow velocity of water in the well and the rate at which the probe is being raised or lowered into the well. Caliper logs must be run with the flowmeter log because the flow velocity is a function of the cross-sectional area of the borehole. The relative contribution of individual aquifer zones to the total flow from a well can be calculated using data from flowmeter and caliper logs.

Log suites. In most instances, individual borehole geophysical logs do not provide unequivocal lithological information. By running a suite of logs, more accurate qualitative and quantitative information on formation porosity, hydraulic conductivity, bulk grain density, and fluid conductivity could be extracted. Figure 2-4 depicts a qualitative interpretation of a suite of geophysical logs. A high gamma ray count, for example, could be produced by a shale bed or phosphatic limestone layer, and shale layers are identifiable by a low-resistivity and high-gamma log response.

![Figure 2-4 Qualitative interpretation of a suite of geophysical logs](image)
Hydrophysical logging. Hydrophysical logging is a new form of borehole logging where demineralized water is introduced into the borehole and the dispersion of the demineralized water is continuously logged with respect to time. This allows a more accurate measure of calculating variations in the formation’s hydraulic conductivity.

Aquifer Testing

Methods of aquifer testing will be discussed in detail in chapter 4 of this manual. However, aquifer testing is very useful during exploration of test holes, and many effective methods are now available for performing such testing. In the simplest form, a record of flow rates of the water produced at different depths while drilling with air is a form of aquifer testing, yielding valuable information.

Exploratory Drilling

In some instances, existing wells may not be located in a potential water supply aquifer, and drilling one or more exploratory wells into the aquifer is necessary. Exploratory drilling is performed to determine an aquifer’s characteristics, including hydraulic conductivity, water quality, thickness, and areal extent. The newly drilled wells can also be used for borehole geophysical logging and aquifer testing as described previously. The number and spacing of the wells drilled will depend on the size of the aquifer and the amount of water supply development planned.

Lithologic Logging

Accurate lithologic logging during drilling is crucial, and a hydrogeologist experienced in well logging should be employed. Lithologic logs and drillers’ logs, including the drilling rate, are used with geophysical logs to obtain the most information about the groundwater. Geophysical logs can more accurately place the depth of discontinuities than can a lithologic log.

Application

There is no established order in which exploration methods should be applied; a balanced program of appropriate combinations will produce the most information. However, the knowledge gained through a geophysical investigation only extends the factual information gained from test drilling and adequate sampling.

METHODS FOR MONITORING GROUNDWATER QUALITY

Before developing a groundwater supply, the water quality must be currently acceptable and expected to remain so in the foreseeable future. The Safe Drinking Water Act and its amendments outline a series of water quality parameters that raise health and aesthetic concerns. Defining water quality will permit the appropriate treatment to be designed. This initial assessment can provide a basis for legal action against anyone who contaminates the water supply after development. After the initial water quality assessment is performed and groundwater development is assured, a system for monitoring water quality should be maintained, and a reassessment of upgradient contamination risks should be performed periodically.

Monitoring Wells

In areas where contamination risks are high, sentinel monitoring wells should be installed. These wells, located at various depths, will provide definition for the initial groundwater assessment. Sentinel wells also serve as an early-warning system to detect
changes in water quality and water elevations before they affect the water supply wells. In recent years, equipment for sampling from monitoring wells has become widely available. Small submersible or portable pumps can be installed into well casings as small as 1 in. (25 mm) in diameter, although it is common for monitoring wells to be at least 4 in. (100 mm) in diameter and made with polyvinyl chloride (PVC) casings.

The number of wells needed and their locations, depths of completion, and construction details must be specified as part of an integrated plan. The plan must account for likely sources of contamination, local hydrogeology, and the hydraulic effects of the proposed groundwater development. For example, what was previously considered downgradient from the well can become upgradient either after pumping begins or as influenced by nearby surface water. These changes should be simulated with computer modeling to aid in designing a monitoring-well network.

The initial assessment may indicate that one monitoring well is sufficient to begin with, but an increased contamination threat in future years (for example, due to local growth and development) could indicate a need for additional monitoring wells. This potential for development demonstrates the importance of continual evaluation of changes that might affect the groundwater supply. One suggestion is to reverse the potential pollution site monitoring requirement of one well upgradient and three downgradient for a permitted hazardous waste site. Therefore, the water supply agency would be responsible for three wells upgradient and one downgradient.

Sampling

Multilevel sampling capability that ensures against the possibility of a monitoring well acting as a conduit for vertical migration of contaminants should be used. Several techniques are available, including locating several wells of differing depths in close proximity to one another (cluster wells) and using multiple-completion monitoring wells that consist of a nest of piezometers installed in a single borehole, as shown in Figure 2-5.

Proper construction of multiple-completion wells is not an easy task, but it can offer cost savings. Materials must be properly placed into the well bore. For example, the perforated portion of each piezometer must be isolated from the others in the nest so that fluid pressures and water quality can be monitored correctly at that isolated level. Three-dimensional data collected using a network of multilevel monitoring wells should provide a useful definition of contaminant distribution, although the cost of such information may be high.

Analysis. Samples taken from monitoring wells should be analyzed for suspected contaminants, including severe mineralization. The mineral quality of water will limit the range of possible water uses. For example, hard water (high concentrations of calcium and magnesium) will be unsuitable for boiler feed water. Water containing high concentrations of sodium or boron will be unsuitable for irrigation. Although the biological quality of deeper groundwater is usually good, testing for fecal bacteria and other microbiological indicators should be performed periodically.

In recent years, a wide variety of constituents that can be harmful even in extremely low concentrations have become a concern. Unfortunately, analyses to detect all of these chemicals can be expensive, so analytical methods used should be directed toward detection of suspected compounds. Knowledge of probable sources of contaminant chemicals used in the area and selection of any key indicator constituents should be used in the design of the sampling and analysis program to reduce cost without loss of study credibility. Guidance for selecting chemicals to be tested may be obtained from state and federal regulatory officials responsible for facility permits. Indicator parameters, referred to as “priority pollutants,” often can be used to determine the likely presence or absence of chemicals that are a concern to groundwater development.
Fortunately, groundwater quality in many locations does not change because of shallow gradients, i.e. movement of groundwater is very slow, especially compared with surface water quality. Therefore, once water quality has been established, the frequency of groundwater sampling normally need not exceed quarterly or even semi-annual checks, except for potable water sources or areas of suspected contamination.

FIELD LOGISTICS AND DOCUMENTATION

Land costs, permits, professional services, and documentation are very important to the evaluation of potential water supply sites.

Land Costs

Legal access to property for preliminary groundwater investigation will commonly be granted by the landowners on request. However, as soon as a property has been identified as attractive for detailed exploration, purchase or lease options should be obtained. The cost of land may be more reasonable before good water supplies...
are confirmed. Drilling-site preparation and restoration can be added costs to the groundwater development that should not be overlooked.

Permits

Exploratory drilling permits must be secured and fees paid, often at the state or county level. Obtaining permits is usually the responsibility of the well driller or the engineer in charge. In addition to the driller, a qualified hydrogeologist often supervises the drilling and well-construction activities. The hydrogeologist’s responsibilities will usually include procuring well construction materials, well logging, conducting or overseeing geophysical logging, interpreting logs, well designing, and certifying as-built drawings.

Part of the drilling permit will include proper abandonment once the well has served its purpose. Public agencies are concerned about well construction and post use of a well because of the possibility of cross contamination between shallow zones and deeper high-quality aquifers. The documentation of all field work can be valuable in later phases of groundwater development or protection. Proper land survey location, global positioning system (GPS) locations, description of the wells, and complete as-built drawings of construction are desirable.

Professional Services

Firms specializing in hydrogeology are valuable to the groundwater developer for their knowledge and experience in carrying out fieldwork and preparing the necessary reports. Some firms offer total services in groundwater development, as well as highly specialized equipment or services. Budget constraints, the complexity of the project, and the adequacy of the groundwater developer’s staff can determine the most appropriate team. Some states require registered engineers, certified geologists, and other professionals to verify the accuracy and completeness of fieldwork.

Documentation

Documentation of initial investigations and water supply development must be detailed and complete. Because of the complex nature of the information, the use of graphics is helpful. Cross sections (Figure 2-6), showing the hydrogeologic interpretation, with lithologic logs, geophysical logs, and as-builts for wells, present a good summary of information. Maps showing predevelopment groundwater contours versus the contours as affected by the new pumping, including surrounding land uses and any potential sources of groundwater contamination, should be available. Figures 2-7 and 2-8 illustrate such maps.

Legal documents. Multiple copies of reports pertaining to groundwater development may be required by different levels of government for differing purposes. If the required reports are not to be submitted on issued forms, a reporting system that meets the needs of all federal, state, and local organizations should be designed.

Because federal, state, and local laws are requiring more information to be filed on a periodic basis, permits must be filed, fees must be paid, and monitoring must be conducted. These activities should be part of the planned groundwater development program. It may be desirable to consult an attorney knowledgeable in all aspects of the law, including groundwater, land use, and permit procedures, before finalizing reporting procedures. Reports can be of great value in litigation and, therefore, should be prepared with care and be subjected to appropriate legal, technical, and managerial review.
Figure 2-6 Graphic detail of a hydrogeologic cross section

Figure 2-7 Predevelopment groundwater contours showing potential contamination source downgradient
Application. In addition to the traditional groundwater quantity reporting (along with the few inorganic analytical tests), more extensive testing for organic contaminants is being required. Water conservation interest groups are using the pumping data to predict available groundwater supply and look for indications of groundwater mining. Information is also being filed with various government agencies involved in groundwater monitoring of facilities that produce, handle, store, treat, or dispose of chemicals determined to be hazardous to health or the environment. This information, when combined with information provided by the groundwater developer, can increase understanding of the regional groundwater system under study and its potential and reliability as a water supply.

REFERENCES

This page intentionally blank.
The overall goal of groundwater management is to reliably provide sufficient water to sustain urban, agricultural, and environmental needs over time. Groundwater management is becoming increasingly complex, as a result of the constraints from water quality legislation and regulation. In addition, developing treatment technologies that are both effective and cost-efficient has become challenging. Groundwater is playing an increasingly important role in water supply as surface water availability decreases, so additional emphasis is being placed on better understanding the relationship between surface and groundwater flow systems. Politics and climate seem to be the two least controllable or predictable factors in groundwater management, as community resources are stretched to secure the funds required to meet new standards and institutions struggle to reach agreement on how to share resources, prevent pollution, and manage existing contamination. Limited water supplies also increase the need to develop agreements facilitating the movement of water between entities, which can become contentious.

In general, groundwater aquifers can be managed by local or regional agencies or, when legally adjudicated, by a court-appointed arbitrator. Water pumped for municipal supply is subject to state and federal water quality standards, the latter taking precedence over the former. Groundwater aquifers may be physically connected, which allows movement of contamination with the flow of water from one aquifer to another, requiring regional approaches to management. Aquifers that have long been managed to prevent overdraft now see the emphasis shifting to include protection and restoration of groundwater quality.

Groundwater is perceived by many to be “better” than surface waters, or even pristine, since contamination pathways into groundwaters are not as obvious. However,
many studies have indicated that groundwater contamination may be present in as
many as 25 percent of all wells. For instance, a total of 673 waterborne illness out-
breaks, affecting 150,000 people, occurred in the United States between 1946 and
1980. Forty-four percent of those outbreaks were attributable to groundwater sources
(Asano 1985). More poignantly, 65 percent of the waterborne illness cases in 1977
were due to viruses (Keswick et al. 1982). Keswick et al. estimated that 50 percent of
the waterborne illnesses in the United States in a given year originate from ground-
water, and 65 percent of those are enteric viruses (Yates et al. 1985).

More groundwater contamination is likely to be found in the future, as decades of human
activities, including waste discharges, agricultural practices, leaking underground fuel
tanks, and manufacturing activities accumulate. Naturally occurring constituents
can also impair groundwater quality, such as arsenic and barium. Simultaneously,
drinking water regulations are both increasing in number and stringency. In 1950,
there were about a dozen constituents for which there were water quality regulations.
At present, there are more than 120, and in the future, it is projected that there may
be as many as 200 regulated constituents. Thus, a groundwater source or a treatment
plant that meets current standards may be out of compliance in the future.

Institutional barriers themselves offer formidable challenges. For example, differ-
ent entities may coexist in aquifers that

• supply public municipal water
• supply private users
• deliver imported water
• recharge the aquifer
• control flooding
• oversee quality
• oversee quantity
• manage irrigation supply
• manage cleanup
• manage biological habitats and species

The creation of agreements to alter the management, institute cleanup, or improve
protection of a groundwater aquifer requires negotiation and a regional outlook by
each entity. Figure 3-1 illustrates all of these groundwater management factors.

LOCAL MANAGEMENT STRATEGIES

When groundwater has been contaminated, a variety of strategies are used. The
main strategies are blend, pump and treat, use for nonpotable water, relocate the
well, or abandon the supply (Figure 3-2).

The least expensive and most common strategy is blending with another source to meet
drinking water standards. Water of differing types of contamination may be blended
together to reduce their respective problems to acceptable levels. Sources include

• a cleaner part of the aquifer
• a different aquifer within the aquifer
• another aquifer
• or imported supplies
In the pump and treat strategy, groundwater is extracted from an aquifer and treated in aboveground facilities (see chapter 11). In some cases, the groundwater is treated beyond the required level and then blended with nontreated groundwater to produce a more cost-effective, potable supply. Treatment is generally more expensive than blending and may not always be technologically feasible. However, if the cost of water imported to supplement local supplies increases and its availability diminishes, the treatment of lower quality groundwater can become feasible.

Heavily contaminated groundwater is sometimes used for nonpotable purposes, such as industrial use or landscape and agricultural irrigation. These practices may become obsolete if agricultural land is converted to urban or residential use and the
nonpotable distribution system is not extended to other potential users. Recycled water (highly treated wastewater) is also being used, as regulations permit, for purposes that do not require direct use as potable water, such as for irrigating golf courses or crops. Additionally, indirect use of recycled water to recharge groundwater aquifers for later potable use is being considered in some arid areas in the western United States, and for salinity control in some coastal areas.

A contaminated well may be replaced by drilling a new well in a different aquifer or in a more pristine area of the aquifer. Sufficient knowledge of the hydrogeology, as well as the nature and extent of the pollution plumes, is required so that contamination is not spread further or drawn to the new pumping site.

If deemed too costly to treat, a contaminated groundwater basin or aquifer may be abandoned and replaced with imported or alternate supplies. Without active aquifer monitoring and management, later restoration of the aquifer becomes more difficult. Basins and aquifers are not static, as plumes of contamination expand, migrate, and mix. This approach is becoming less viable, especially in arid parts of the country where imported supplies are limited and population growth continues.

REGIONAL GROUNDWATER MANAGEMENT

Of the two major concerns of groundwater management, quantity and quality, the former has traditionally been the reason that brought entities with an interest in water together. Three methods employed to stretch supplies further by expanding locally available supplies are artificial recharge, conjunctive use, and water wheeling. In arid regions such as the southwestern United States, artificial recharge has been practiced for decades, with conjunctive-use agreements initiated in the 1960s, and water-wheeling arrangements starting in the 1990s.

Artificial Recharge

Artificial recharge augments groundwater supplies by supplementing natural recharge. Surface aquifers percolate runoff captured from precipitation, imported water, and sometimes recycled water. This concept is discussed more fully in chapter 11.

Conjunctive Use

Groundwater management programs can improve the long-term reliability of water supplies by integrating the use of surface water and groundwater together, or conjunctively. Conjunctive use may be accomplished through either direct or replacement operations.

Direct conjunctive use places imported water into the aquifer, and the water is then pumped as needed. Replacement *or In-lieu* conjunctive use is when a water supplier uses imported water instead of pumping its groundwater, leaving the groundwater available in the aquifer for use at a later time. *Seasonal storage* operations recharge an aquifer with imported water during wet times of the year, when surface and imported waters are plentiful, and pump the water out during high-demand months, generally within that same water year. This results in a seasonal shift, with water typically stored in winter months and pumped during summer months. *Carryover storage* occurs when the recharged water is held for use beyond the next water year, such as for a drought. This process is referred to as “aquifer storage and recovery” (ASR) and is discussed more fully in chapter 11.
Wheeling

Water wheeling uses a water supplier's transportation system for delivery of water not owned or controlled by that agency. Wheeling is a common practice in the energy and communications industries. Some states have enacted legislation regulating wheeling.

For example, the California Water Code requires that water wheeling must not harm any other legal user of water. The cost of wheeling typically recovers costs such as transportation, including capital and operating costs associated with pipelines, reservoirs, and other facilities required to distribute water.

Water Marketing and Water Transfers

Water marketing is the general term encompassing the transfer, lease, or sale of water or water rights. A water transfer is the shift or sale of water from a seller to a buyer. Water transfers can take many forms, each with its own benefits and risks. A spot transfer denotes purchase of supplies when needed, such as to offset the effects of a prolonged drought. Under an option transfer, the buyer takes a certain amount of water at any time during the life of the agreement, making option payments on an annual basis and making an additional payment in those years in which the water is needed. Buyers in a core transfer (or take-and-pay) take a specified amount of water each year and must pay the cost of that water, year in and year out, whether or not the water is needed. This concept is currently applicable only in the western 18 continental states.

Protection and Management of Groundwater Quality

When a site has been selected for installation of a wellfield, the water supply entity must protect it from contamination. Watershed protection can be broadly defined as a program to reduce the threat to water supplies from contaminants; for groundwater this is called a watershed protection program. A watershed protection program reduces the potential for contaminants to leach into the groundwater by identifying and managing recharge areas specific to the wellfield. Watershed protection programs range from simple regulations concerning the location of facilities in the vicinity of the wells, to extensive land purchases and comprehensive land use restrictions, such as have occurred in Seattle, Washington, and the New York City water supply area.

The legal basis for a watershed protection program is a mandate within the implementation of the 1986 amendments to the Safe Drinking Water Act. Under Section 1428, each state must prepare a wellhead protection program and submit it to the US Environmental Protection Agency (USEPA) for approval (USEPA 1995). The protection of public water supply wells through wellhead protection programs is considered an important component of a comprehensive state groundwater protection program, as established by USEPA (1991).

Recently, some members of Congress have expressed a desire to relax some of the standards of the Clean Water Act, including source protection. Some water suppliers are creating their own source protection programs. The American Water Works Association has become very involved in coordinating these efforts. Source protection should be the first step in safeguarding public water supplies, reducing the need to use expensive alternative treatment techniques. In some cases, polluters pay for the water quality management rather than those using the water, which is the goal of the
Clean Water Act. Most of these approaches are efforts that can be managed better from the local level.

Groundwater systems are as susceptible to contamination as surface waters, and may be subject to contamination for more significant periods of time because of the slow movement of the water. Groundwater-related disease outbreaks and associated illnesses have risen as a result of contamination from both chemical and biological concerns. In addition, many layers of rock that were previously thought to be highly confining, may contain fractures or intrusions, such as wells that create pathways for contaminants to move into underlying aquifers. Such cases have been documented in New York, New Jersey, California, and Nebraska. While water suppliers try to monitor what is happening with their watersheds, they may find that the location of buried underground storage tanks or old landfills have been forgotten.

In developing a wellhead protection program, water suppliers must involve the various diverse perspectives and interests of the community to be successful. Wellhead and groundwater protection requires cooperative efforts on all governmental levels and between units of government because of the movement of water across jurisdictional boundaries. The process should be responsive to local needs and allow local autonomy, which is important in many governmental jurisdictions and in areas where multi-jurisdictional cooperation is needed.

Delineation of a wellhead protection area is typically done through the use of computer modeling of travel time and pollutant transport. These models can be complex and can create large areas where many land uses are prohibited. In some states, this can conflict with private property rights objectives. These laws indicate that if the property is damaged significantly (often defined as a devaluation of 10 percent), the regulating agency must pay the affected property owner. The concept of source protection conflicts with this legal concept, which could be a significant impediment for utilities attempting to implement wellhead protection programs.

Determining the contaminants that may exist within the protection area is a key step. USEPA estimates that 50 percent of all community and at least 57 percent of the domestic water wells in the United States contain nitrates, which have few natural sources. Fertilizer application, inadequate maintenance of septic tanks, unlined wastewater holding ponds, and improper sludge or manure application sites are major contributors to nitrate contamination. Over 90,000 synthetic chemicals are in common commercial and industrial use in the United States, a number that continues to grow every year. Few are tested for, yet more than 200 of these chemical substances have been found in groundwater. Others may occur in groundwater where wells are not currently being drilled or investigation has not occurred. Typically, concern does not arise until a contaminant is found in a potable supply. Organic chemicals have become a pervasive contaminant in groundwater supplies. This pollution is more extensively discussed in chapter 8 of this manual.

The management of a wellhead protection area to prevent contamination involves the following steps:

1. Identify protection options appropriate to the potential contaminants.
2. Select the options that are technically and politically feasible.
3. Monitor the effectiveness of management practices.
4. Implement the management practices.
5. Develop contingency plans to address possible threats.

Wellhead management options or tools can be broadly classified between regulatory and nonregulatory options. At the local level, the regulatory practices are usually in
the form of zoning ordinances, subdivision ordinances, or regulations assigned directly to the protection of groundwater. The USEPA *Handbook for Groundwater and Wellhead Protection* (1994) indicates a number of options for implementation of a wellhead protection program as tools, including land use practices, regulations or legal measures, and administrative considerations. Of course, a groundwater-monitoring program is necessary to monitor the success of any groundwater protection program.

The 1996 Amendments to the Safe Drinking Water Act require states to implement Source Water Assessment Programs (SWAPs) to assess areas serving as sources of drinking water in order to identify potential threats and initiate protection efforts. Local communities can protect their groundwater resources by incorporating wellhead protection activities into land use management.

Since 1984, the Groundwater Foundation has been promoting the national Groundwater Guardian Program (Groundwater Foundation 1995) which recognizes, supports, and connects communities protecting groundwater. The program is made possible by grants from the USGS, USEPA, and others. This private foundation has been recognized by numerous national and international organizations, including being honored by the United Nations in 1990.

Most states have groundwater programs. For example, California has established a process for developing groundwater management plans for individual groundwater aquifers. Connecticut ranks groundwater aquifers according to levels of protection. For information about other state programs, contact the state's division of water resources.

REFERENCES

Chapter 4

Wells—Types, Construction, and Use

Many methods of well construction have been developed, and several construction types are generally used in most areas. Proper well construction should be based on a thorough engineering study and design to best accommodate existing conditions or requirements.

TYPES OF WELLS AND THEIR CONSTRUCTION

A well type generally refers to the method of well construction: dug, bored, driven, or drilled. A fifth type of well, which is not named for its method of construction, but rather a description of its configuration, is the radial collector well. An emerging concept is the use of horizontal wells without collector caissons for water supply. Each type of well has advantages, such as ease of construction, storage, capacity, ability to penetrate various formations, and ease of safeguarding against contamination.

Dug Well

This type of well technology is rarely used in the United States and Canada. It may be appropriate for developing countries.

A dug well can furnish relatively large supplies of water from shallow sources. The yield from a dug well increases with diameter, but the increased yield is not proportional to the increased size. A dug well is of large diameter, usually 8 ft to 30 ft (2 m to 9 m), when installed for municipal purposes, with a depth varying from 20 to 40 ft (6 m to 12 m). Because of the large opening, dug wells are easily polluted by surface water, airborne material, and objects falling into or finding entrance into the well.

Construction. Generally, a dug well is circular, because this shape adds strength and is usually easier to dig. Material is frequently excavated using a pick and shovel, or a hoist with a bucket. Clamshell buckets with power hoists can be used when no large boulders or thick layers of clay or hardpan are encountered.
If the formation in which the well is being dug will stand without support, lining the excavation may not be necessary until the water table is reached. Below the water table, sheet piling temporarily braces the sides of the excavation. Later, after the lining or casing (usually called the curb) is placed, the piling is removed. Some older wells are brick-lined.

To minimize surface pollution, monolithic concrete curbs are used. The curbs are built in rings 3 ft to 4 ft (1 m to 1.2 m) high. As the well depth increases and the curbs sink, additional rings are added. The rings are reinforced and are tied together by vertical steel. Both inside and outside forms are used to get a smooth surface that will sink easily. The portion of a curb that lies in the water below the limit of drawdown should be perforated. Short pieces of pipe are cast in the curb, several in each square foot (0.09 m²). Graded gravel should be placed around the outside of the curb to keep sand from coming through the perforations. Pipe and gravel sizes depend on the natural formation grain size. Gravel should also be placed in the base of the excavated well. In some cases, pre-cast concrete pipe sections can be used as the well casing; the below water sections must be perforated.

Bored Well

A bored well is installed where speed and economy are important, and where water can be reached at shallow depths through unconsolidated formations. An auger can be used only where formations, though relatively soft, will permit an open hole to be bored to depths ranging from 25 ft to 60 ft (8 m to 18 m) without caving. The most suitable formations for bored wells are glacial till and alluvial valley deposits. Bored wells are limited to about 36 in. (1 m) in diameter. Generally speaking, this type of well is not used for municipal water supplies.

Construction. A bored well is constructed using either hand or power augers. The same type of hand auger used for digging shallow holes can be used for well construction. However, extensions are needed for the auger to handle the greater depths encountered in well construction. Power-driven augers are half-cylinder, open-blade, or cylindrical-bucket-types with cutting blades at the bottom. The material cut by the blade is collected in buckets lowered into the hole and then removed. Bucket-type augers can be used to construct wells up to 36 in. in diameter and can be used where large boulders are present. This method of drilling is commonly used for short-term wells, such as for construction dewatering, or for recovery wells for cleaning up groundwater contamination.

As sand and gravel are encountered below the water table, the well casing is lowered to the bottom of the hole. Boring continues by forcing the casing down as the material is removed from the hole. After the well is completed, the annular space between the borehole and outside of the casing should be filled with cement grout to prevent the supply from becoming contaminated.

Driven Well

Driven wells are simple to install and economical, but practical only where the water table is shallow. A driven well consists of a pointed screen, called a drive point or well point, and lengths of pipe attached to the top of the drive point. The drive point is a perforated pipe covered with woven wire mesh, a tubular brass jacket, or is similar to screens for drilled wells and is adaptable to driving. A pointed steel tip at the base of the drive point breaks through pebbles and thin layers of hard material and opens a passageway for the point. A driven well varies from 1 ¼ in. to 4 in. (32 mm to 100 mm) in diameter and is a maximum of about 30 ft to 40 ft (9 m to 12 m) deep.
For municipal water supplies, the driven well is used where thin deposits of sand and gravel are found at shallow depths. The production rate of these formations is limited, and a single well does not produce sufficient water. A battery of well points, however, with the wells located a reasonable distance apart and connected by a common header to the pump, could develop sufficient water to supply a small community. In this case, a suction pump raises water in the wells to a point where it can be pumped into the distribution system. This configuration is typically limited to areas where the water table is within about 15 ft (70 m) of the surface. Driven wells are also used as observation wells during aquifer tests.

Construction. When constructing a driven well, an outer casing is first installed. The outer casing protects the inner casing to which the pump is attached. A partial vacuum occurs in the inner casing that can draw contamination at leaking joints. The outer casing is usually 2 in. (50 mm) larger in diameter than the well casing. It should extend a minimum distance of 10 ft (3 m) below the ground surface.

In sand and gravel, the outer casing should extend to just above the drive point. The outer casing can be driven with a sledgehammer. A tripod and pulley can be used, which raises and lowers a heavy block onto a drive cap placed on top of the casing. Extra heavy pipe should be used to withstand the load. The sand and gravel in the outside casing are removed by an auger during driving. If the ground is clay, the outside casing should be set in a hole prepared with an auger. Under such conditions, a 10-ft (3-m) depth usually affords sufficient protection. After the casing is set, the annular space between the borehole and the outside of the casing should be sealed with cement grout.

The next step is to lower the drive point, attached to the bottom of a string of inner casing, into the hole. The drive point is driven below the bottom of the outside casing to the water-bearing formation. This depth may be tested periodically by pouring water down the well casing and observing how quickly the water moves down the well. This can be accomplished by attaching a pump, or by jetting water down inside the casing to wash out the screen. When the final depth has been reached, raising or lowering the pipe 1 ft (0.3 m) or so frequently brings a greater portion of the screen into contact with the water-bearing formation, resulting in increased production.

Drilled Well

A drilled well is commonly used for municipal supply and can develop water from shallow or deep sources in unconsolidated sands and gravels or rock. Pipe diameters range from 2 in. to 48 in. (50 mm to 1,210 mm) and above for drilled gravel-wall wells. High-capacity wells can be developed that can produce up to thousands of gallons per minute, provided that the aquifer can support these production rates.

Construction. Well drilling is a complex and specialized construction task, and is only summarized here. More complete discussions are provided in standard industry references such as Driscoll (1986), Roscoe Moss Co. (1990), ADITC (1997), and NGWA (1998). When constructing a well, a drilling rig is used to excavate or drill a hole, and then a casing is forced or placed in the hole to prevent it from collapsing. When a water-bearing formation of sufficient capacity is reached, a screen is set in place that allows water to flow into the casing and holds back the fine material in the formation. When the drilled well passes through rock, a screen is usually not used, unless the formation is fractured.

Wells are drilled using many different types of equipment. The methods used to construct wells are classified as cable-tool, rotary, reverse-circulation rotary, California, and jetting. Each method is briefly described in the following text.
Cable-tool. The cable-tool method of drilling is used extensively for wells of all sizes and depths. Cable-tool methods are also called percussion, spudder, and solid tool. The details for constructing and operating the drilling machines vary widely, although all machines dig a hole using the percussion and cutting action of a drill bit. The bit is located at the end of a string of solid drilling tools. The drilling tools are placed at the end of a cable that is alternately raised and dropped. The drill bit, a club-like, chisel-edged tool, breaks the formation into small fragments, and the reciprocating motion of the drilling tools mixes the loosened material into a sludge or slurry. Please note that the action of the bit can damage the borehole wall, resulting in a lower well efficiency than desired.

Generally, several feet (one to two meters) of hole are drilled at each run of the drill tools. After each run, the tools are pulled from the hole and swung aside while a bailer is used to remove the slurry. The bailer consists of a 10- to 25-ft (3- to 8-m) long section of tubing with a check valve in the bottom. The bailer is smaller in diameter than the drill hole so that it can move up and down freely.

An experienced driller adjusts the length of the drill cable so that the bit will strike with the right amount of weight and stroke. The driller holds the cable and feels the jarring when the cable is dropped, which indicates how well the tools are operating. The driller adjusts the length of stroke and rapidity of blows according to the cable vibrations.

Drill hole characteristics. The drill hole must be straight and vertical, or plumb. Usually, the first indication that the hole is out of plumb is that the drilling tools begin to stick. The drilling should stop and the hole realigned when this occurs. A straight, vertical hole permits the lowering of a pump to the desired depth and prevents damage to pumping equipment. Although pump manufacturers state that pumps will operate satisfactorily when slightly off vertical, a well out of alignment causes severe wear on the pump shaft, bearings, and pump column pipe. In extreme cases, lowering a pump into a well or pulling it out may become impossible.

The drilling contractor should be required to verify through testing that the completed hole is straight and plumb. In one such test, a 40-ft (12-m) length of pipe, often called a “dummy,” is lowered into the well to the depth of the lowest anticipated pump setting. The outer diameter of the test cylinder should not be more than ½ in. (13 mm) smaller than the diameter of the casing being tested. The test cylinder should move freely throughout the length of the casing. The well should not vary from the vertical by more than two-thirds the inside diameter of the well per 100 ft (30 m).

After the hole has been drilled to full depth and verified, a well screen section is lowered inside the drill casing until the screen is even with the aquifer. The drill casing is then retracted a distance almost equal with the length of the well screen to expose the formation materials to the well screen.

Formation recognition. To determine the exact kind of material being drilled, samples should be taken of the cuttings at 5-ft (1.5-m) intervals, or at each noticeable change in formation. Generally, water-bearing formations are easily detected. A sudden rise or fall of the water level in the well frequently indicates that a permeable formation has been encountered. Often, water is added inside the drilling pipe to maintain sufficient head to prevent excess formation materials from heaving and washing inside of the casing during drilling. Sand, gravel, sandstone, and limestone formations produce the largest quantities of water. Drill operators need to be especially watchful when drilling in these formations.

Advantages. With the cable-tool drilling method, a more accurate sample of the formation is obtained; the quantity and quality of each formation can be determined; and less water is necessary for drilling operations because drilling mud is not used during drilling, which minimizes plugging of the formation and simplifies
development of the well. In most cases, a cable-tool rig is light and can traverse rough country easily.

Rotary. In the rotary method of well drilling, the hole is made by rotating a bit located at the end of a string of drill pipe. This method is sometimes augmented by a percussion action, with cuttings removed by a circulating fluid. The rotation speed of the drill pipe and the bit and the type of fluid used (and its flow direction) can vary by type or form and size of bit; the characteristics of the formation to be drilled; the strength and weight of the drill pipe; and the size and depth of hole to be drilled. The bit and drilling speed should be selected so that cuttings are not produced faster than circulating fluid can carry them away. If the hole diameter becomes greatly enlarged, the uphole velocity may be insufficient to remove the cuttings from the well.

The drill pipe is hollow, so fluid can be pumped to the bit. When drilling in unconsolidated or cemented granular formations (clay soil, sand, gravel, weak sandstone, and shale) a “mud” or fluid of sufficient viscosity is used to lift cuttings to the surface. The fluid must also have the necessary sealing qualities and weight, which help stabilize the well bore. The fluid may be formed by normal drilling operations, starting with clear water, however, an engineered mud fluid is preferred for the best results. The fluid is usually prepared in a large tank or pit located near the drilling rig. Clays at the site can be used, but commercial colloidal material (bentonite clay base), which is purchased in powdered form and mixed with water, is preferred. Specialized polymer muds are also available for certain drilling conditions where bentonite mud is not preferred.

Air-based fluids are also used, principally in rock drilling. The fluid may be air only, pressurized by a compressor, or air mixed with water (mist) or polymers (foam). Foam permits vastly improved cuttings clearance, and is used where the fluid system (compressor and drill tools) capacity would not be able to generate enough uphole velocity to clear cuttings.

Down-the-hole (down-hole hammer, hammer drilling). The down-the-hole method involves a pneumatically operated bottom-hole drill that efficiently combines the percussion action of cable-tool drilling with the turning action of rotary drilling (ADITC 1997; NGWA 1998). The pneumatic drill can be used on a standard rotary rig with an air compressor of sufficient capacity. It is used for fast and economical drilling of medium to extremely hard formations. Fast penetration results from the blows transmitted directly to the bit by the air piston. As in air rotary, air circulation flushes the bit and carries cuttings to the surface. Air also powers the hammer. The system both hammers and rotates the tungsten-carbide bits against the borehole face to dislodge cuttings.

Continuous hole cleaning exposes new formation to the bit and practically no energy is wasted in redrilling old cuttings. As the force to drill the formation is applied by the piston at the bit surface, the down-pressure necessary for air rotary hole advancement is not needed, and holes are typically straighter.

Down-the-hole drilling is generally the fastest method of penetration in hard rock. The bit is turned slowly (5 to 15 rpm) by the same method by which the drill bit in the fluid or air drilling operation is rotated. Foaming additives are occasionally used to increase the up-hole carrying capacity of the return air.

The prepared fluid circulates through the drill pipe and out through holes in the bit, where it sweeps under the bit, picks up the material loosened by it, and carries it up the borehole to the surface. In mud rotary drilling, the fluid from the well flows into a settling tank or pit, where the cuttings settle out. The fluid, now free from coarse materials, flows into another pit, where it is picked up by the pump for recirculation. Formation samples are typically collected by sampling the drilling mud as it exits the borehole before it reaches the settling pit.
Reverse-circulation rotary. The reverse-circulation rotary method differs from the straight rotary method in that the fluid circulates in the opposite direction. The pit is constructed so that the drilling fluid will flow down the borehole and rise in the drill pipe, carrying the cuttings with it. A high-capacity (500 gpm [1,900 L/min] or greater) pump is attached to the drill pipe and keeps the fluid moving at high velocity. The pump may discharge to waste if a large fresh supply of water is available, or the cuttings may settle and the fluid recirculate.

The use of organic polymers reduces the detrimental effect of mud cake in the bore. The reverse-circulation method primarily uses clear water with no mud additives. Keeping the borehole open requires a large volume of water to maintain a head above the natural static water level. The head results in a flow into the formation from the bore, rather than the reverse, and prevents the wall from caving. When substantial thicknesses of materials that will not accept water are encountered, caving may result from the wash action of the fluid moving down the hole. The reverse-circulation method is particularly well suited for artificial-gravel-pack wells because less mudcake forms on the face of the bore and into the formation, reducing development time.

If the formation is highly permeable and the water supply at the surface is limited, processed clays may be added (“mud the hole”), which creates a plastered hole similar to the straight rotary process. This step defeats the primary advantage of the reverse-circulation method of construction. In deeper wells being drilled with the reverse-circulation method, an air line can be added inside the drill pipe to aid in maintaining flow circulation. This also compensates for the increased viscosity of the fluid containing the formation cuttings and allows drilling to depths greater than 1,000 ft (305 m).

Typically reverse-circulation methods can drill larger holes than direct rotary methods—up to 5 ft (1.5 m) in diameter. A test well can be drilled and, if desired, the hole can be abandoned at a minimum expense by plugging. Proper plugging cannot be performed with the casing in the hole unless the casing is perforated to get the sealant between the casing and the borehole wall. In soft, loose, unconsolidated materials, such as dune sand and quicksand, the hole may be difficult to keep open unless the rotary method is used. It also is generally faster than cable-tool drilling for drilling wells greater than about 18 in. in diameter.

Dual-rotary. Dual-rotary drilling uses a drilling rig with two rotary drives. One drive is typically used as a casing driver to rotate the outer drilling casing into the ground. The casing can be fitted with a hardened drive shoe or cutting shoe to help the casing penetrate rock or unconsolidated formation materials. The second drive is a standard rotary drive mounted on the drilling rig mast that uses air or fluid rotary drill pipe and bits.

The drill pipe is hollow, which allows air or water to be pumped down to the drill bit. The drill cuttings are carried up between the drill pipe and the outer driven casing to the surface. The cuttings and drill fluid are separated and samples of the formation can be collected. The drilling fluid can be recirculated back to the drill bit. Drilling mud additives are typically not required, which eliminates the plugging of the formation and borehole, and simplifies well development.

Dual-rotary drilling equipment is gaining in popularity for drilling wells for both municipal water supply and in environmental applications. The main reasons are drilling mud is not needed and zones of undesirable water quality can be isolated or “cased off.”

California. The California, or stovepipe, method of well construction was developed in California primarily for sinking water wells in unconsolidated alluvial materials of alternate strata of clay, sand, and gravel. Wells 16 in. to 20 in. (400 mm to 500 mm) in diameter and up to 300 ft (90 m) in depth are constructed using this method. The California drilling method uses the same general principles used in the
standard cable-tool method except that a specially designed bucket is used as both bit and bailer. Short lengths of sheet metal, either riveted or welded together, are used for casing.

The mud-scow bit used in this method consists of a disk valve bailer with a sharp edged cutting shoe on the bottom. Similar to an ordinary sand bucket, it is heavier, larger in diameter, and has the cutting shoe on the bottom. Each time the bit is dropped, some part of the cuttings are trapped in the bailer. When filled, the bailer is pulled to the surface and emptied.

At the bottom end of a string of California stovepipe casing is a riveted steel starter, 10- to 25-ft (3- to 8-m) long, made of three thicknesses of sheet steel with a forged steel shoe at the lower end. This reinforcement prevents the bottom from collapsing when under pressure. Above the starter, the casing consists of two sizes of sheet steel made into riveted or welded lengths from 2 to 6 ft (0.6 to 2 m). The larger size casing fits snugly over the smaller size. Each outside section overlaps the inside section by half its length so that a smooth surface results both outside and inside when the casing is in place. In this way, the inner and outer joints never coincide.

The casing is forced down, length-by-length, by hydraulic jacks anchored to two timbers buried in the ground. These jacks press on a suitable head attached to the upper section of the stovepipe casing so that the end of the casing will not be telescoped. The casing may also be driven by raising and lowering the tools with a driving head.

After the casing is in place, it is perforated using a Mills knife or similar device that tears the metal. The openings must not be too large, and the pipe must not have too much area perforated.

Caisson well construction. This type of well construction is used in shallow, very loose and permeable alluvial formations where fluid losses may exceed the capacity of the drilling water supply and where no drilling mud is to be used in the drilling process. The hole is made by bailing and sinking a very large diameter casing to about 15 ft (4.6 m). The next casing is installed in a concentric manner, one size smaller in diameter (6 in.) than the first, using the same bailing method until it is extended another 15 ft below the first casing. This process is continued until the bottom of the desired formation or the desired depth is reached. The last casing installed should be of the minimum diameter of the borehole designed or specified.

The well screen and casing are installed concentrically in the temporary inner casing, and placement of gravel in the annular space is initiated. As the gravel material is placed, the temporary inner casing is withdrawn keeping the gravel pack material about 2 meters above the bottom of the casing during withdrawal. This process is continued until the gravel pack extends several feet above the well screen. A grout seal should be installed around the permanent well casing and the remaining temporary casings removed and seals installed in a similar manner. Since no fluid movement or drilling additives are used in the construction, the resulting well efficiency is high and little well development is generally needed.

Jetting. Jetting is used to drill a vertical well when water is found in sand at shallow depths. It can also be used for deep wells. Jetting equipment consists of a drill pipe or jetting pipe that is equipped with a cutting bit on the bottom end. Water is pumped into the well through the drill pipe and out of the drill bit against the bottom of the drill hole.

Casing usually is sunk as drilling proceeds. In some instances, the casing will sink a considerable distance under its own weight. Ordinarily, however, a tripod and drive weight are needed to force it into place. As a rule, one size of casing is used for the entire depth of the well. However, if a well is deep, driving a single string of casing to
full depth can be difficult. Often, several strings of casing of different diameters are telescoped one inside the other to reach full depth.

After the casing is lowered to the water-bearing formation, the well screen and pipe are lowered into the casing. The outside casing provides protection to the inner casing connected to the screen. The well screen is exposed to the water-bearing formation by pulling back the outer casing a distance equal to the length of the screen (similar to the cable-tool method of drilling).

Certain conditions can make this method of well construction difficult. Rock formations and boulders are barriers that cannot be overcome. Formations of clay and hardpan are other types of materials that can present problems.

Other construction methods. Other types of construction include underreamed and bail-down methods. The under-reamed, gravel-wall well is drilled to the top of the water-bearing formation and the casing set. The formation is then underreamed, and the gravel and screen section are placed. The bail-down method makes use of a cone-bottomed screen. The outer casing is sunk to the top of the water-bearing formation and the screen bailed into place while gravel is fed into the space between the inner and outer casing. In the pilothole method, the gravel is fed into the formation through small pilot wells evenly spaced around a central well. The fines are withdrawn through the central well.

Another type of well construction common to the mid-Atlantic and Gulf Coast states is the 2-piece well construction. A large-diameter hole is drilled by the direct rotary methods to the top of the formation to be penetrated by the well screen. The outer casing is grouted to the borehole wall. The formation to be developed is drilled with an under-reamer bit to a larger diameter than the casing installed. The well screen and inner casing (or lap pipe) is installed and its gravel pack material installed by a tremie pipe. In deep wells, the inner casing must lap the outer casing with sufficient length to overcome the buoyant lift forces when the well pump is above the lap pipe. Typically this length is a minimum of 50 ft (15.2 m), with a maximum of 90 ft (27.4 m). A short section of well screen can also be installed 5 ft (1.5 m) above the regular screen to relieve the buoyant pressure in the gravel pack between the casings.

Radial Well

The radial, or horizontal collector, well is widely used because it can produce very large quantities of water. In many cases, a radial well is located along the shore of a lake or river because infiltration from the water body can recharge the well.

A radial well is essentially a combination dug well and a series of horizontally driven wells projecting outward from the bottom of its vertical walls. The main well, or central caisson, serves as a collector for the water produced from the individual horizontal wells called laterals. The laterals are installed in coarse formations, often in more than one layer or tier. The lateral well screens can be installed and a natural gravel pack developed, or an artificial gravel-pack filter can be constructed around the well screens to accommodate finer-grained formation materials. A general schematic diagram of a radial collector well is shown in Figure 4-1.

Construction. The central caisson of a radial well is constructed of reinforced concrete. It has an outside diameter of 12 to more than 20 ft (4 m to 6 m) and an inside diameter ranging between 9 ft and 20 ft (3 m to 6 m). The wall is generally 12 in. to 24 in. (305 mm to 460 mm) thick and is poured in circular sections 8 ft to 12 ft (2 m to 4 m) high. The bottom of the first section, or ring, is formed with a cutting edge to facilitate the caisson's settling in the excavation and to provide a stronger bearing surface for the base of the caisson shaft. Wall ports are usually cast into the first section of the caisson, which are then used to direct the installation of the horizontal well screens.
Material is excavated from within the caisson, keeping the caisson as plumb as possible. Each section is keyed and tied to the previously poured unit for structural stability and watertightness. The final depth of the cutting edge is usually at or several feet (one meter) below the bottom of the water-bearing formation. When the caisson has been sunk to the design elevation, a concrete plug is poured in the bottom.

Laterals are projected horizontally through wall sleeves from the central caisson into the water-bearing formation. The laterals are constructed of slotted or perforated pipe or conventional wire-wound well screens. They are generally positioned near the bottom of the water-bearing formation. In some formations, they may be placed in a selected horizon with efficient hydraulic characteristics. The entire length of a lateral is perforated, with the exception of a 5.10 ft (1.53 m) blank section extending from the outer wall of the caisson. A gate valve is installed on each lateral inside the caisson to make it possible to cut off the flow into the caisson for dewatering. The caisson is typically extended above known or anticipated flood elevations. A superstructure is erected on top of the caisson for housing the pumps, piping, and electrical controls.

Advantages. The radial well offers several advantages over conventional vertical production wells. A much greater length of well screen can be installed at a given well site because the well screen is typically placed near the base of the aquifer and is not limited to the saturated thickness of the formation. This greater length of screen results in extremely low entrance velocities through the well screen openings, reducing the rate of well screen plugging, and typically reducing well maintenance. The location of the laterals near the base of the formation also allows a greater saturated thickness of the aquifer to be used so that higher yields can be obtained at an individual well site. A higher yield allows a single radial well to replace multiple conventional vertical wells, reducing the number of pumps and well systems to be maintained.
Gravel-Wall Well

A gravel-wall well, also commonly called a gravel-packed well, uses larger slot sizes in the well screen section than would be possible if the area surrounding the screen were not gravel packed. The amount of open area in the screen is increased, as is the effective diameter of the well. Also, the amount of fine sand from the water-bearing formation entering the well is reduced. Lower entrance velocities at the screen openings and increased flow per unit of head loss are also achieved.

A gravel-wall well must be carefully designed. The material used in the gravel filter must be clean, washed gravel composed of well-rounded particles. The filter size depends on the size of the natural formation and the intended slot openings of the well screen. Without proper gravel size, the fine sand will not be kept out and the yield will be adversely affected. The size of individual grains of gravel filter material should be four to six times larger than the median size of the natural material. At the same time, the uniformity coefficient of the gravel treatment should be similar to that of the formation material. The slot size for the screen should retain 90 percent of the pack material. An artificial gravel-pack filter can also be installed around the lateral well screens in a radial collector well to match finer-grained formation materials.

Construction. Selected gravel is placed between the outside of the well screen and the face of the water-bearing formation (the drilled borehole). This method is especially useful when developing water from formations composed of fine material of uniform grain size. A gravel-wall well is actually a large diameter drilled well, except that coarse material is placed around the screen instead of using the naturally-occurring materials.

The most common construction used is the gravel envelope (Figure 4-2), where the outside casing is first sunk to the bottom of the formation. The diameter of this outer casing may vary from 18 to 72 in. (460 to 1,800 mm). Artificial gravel packs between 6- and 12-in. thick (150- and 472-mm) perform best and require the least maintenance. For example, a 24-in. (600-mm) bore would be finished with a 10- or 12-in. (250- or 300-mm) diameter screen and 6- to 7-in.-thick (150- to 180-mm) pack.

After the outer casing is in place, the screen is lowered to the bottom of the well and centered. Selected gravel is added to the annular space between the screen and the casing through a small diameter tremie pipe. The gravel is placed evenly around the screen in 2- to 4-ft (0.6- to 1.2-m) layers. As the gravel is added, the casing and tremie are slowly raised. The procedure continues until the entire screen is surrounded with gravel and the pack extends several feet (1½ m to 1 m) above the top of the screen. The outer casing is pulled back high enough to expose the entire screen section. As a rule, the screen is attached to an inner casing, extending to the land surface, into which the pump is placed. About 25 ft (8 m) of the outer casing is typically required to provide a seal against contamination by surface water. If the entire casing is removed, the gravel treatment must not extend up to or close to the land surface. The annular space between the working casing and undisturbed earth must be sealed with cement grout or puddled clay to prevent contamination from seeping into the formation. After the gravel filter has been placed, a pipe is often installed in the finished pump base or foundation to allow additional filter materials to be added if the gravel filter settles because of normal pumping operations, well development processes, or well rehabilitation procedures.

*The uniformity coefficient is the 40 percent retained grain size in a sieve analysis of sediment divided by the 90 percent retained grain size.
Well components common to most wells include well casings, cementing or grouting of wells, and well screens. These components, as they relate to well construction, are discussed in the following paragraphs.

Well Casings

The well casing is a lining for the drilled hole that maintains the open hole from the land surface to the water-bearing formation. Casings seal out contaminated water from the land surface and undesirable water from formations above the aquifer. For the casing to be entirely effective, it must be constructed of suitable materials and be properly installed so as to be watertight for its entire depth.
Materials. Materials commonly used for well casings are alloyed or unalloyed steel, fiberglass, and polyvinyl chloride (PVC). Fiberglass and PVC have been used extensively in recent years for installations in shallow wells, or where corrosion/bacteria may be of issue. In selecting a suitable material, the strain that the casing experiences during installation and the corrosiveness of the water and soil must be considered. All give satisfactory service given the correct groundwater environment.

Many grades of casings are available, and ordering a nominal diameter of casing is not sufficient. The desired weight per foot of pipe or standard dimension ratio (SDR) of plastic casing must be specified. The tables in AWWA Standard A100-97 present data on steel pipe recommended for use as permanent well casings. ASTM Standard F-480 defines thermoplastic casing dimensions and joining. NGWA (1998) provides further detailed discussion on casing performance, selection and installation, including the use of plastic casing types.

Lighter-weight materials may be used for test wells or temporary casings. Temporary casings are sometimes used as forms when a grout seal is placed around the outside of the permanent casing. The temporary casing is withdrawn as the grout seal is placed. Under such circumstances, lighter and less expensive material can be used.

Joints for permanent steel casings should have threaded couplings or should be welded to ensure watertightness from the bottom of the casing to a point above grade. This precaution will prevent surface contamination or undesirable underground waters above the water-bearing formation from entering the well. Thermoplastic casing is typically of either bell-and-socket construction, joined by cementing, or joined with spline-lock fittings in diameters relevant to water wells (ASTM F-480).

Installation. When drilling a well by the cable-tool method, casing should be driven as soon as it becomes necessary to prevent the ground formation from caving. A drive shoe, attached to the lower end of the pipe, keeps the hole from collapsing. Drive shoes are threaded or machined to fit the pipe or casing, and the inside shoulder of the shoe butts against the end of the pipe. Drive shoes are forged of high-carbon steel, without welds, and are hardened at the cutting edge to withstand hard driving.

Casing is driven using drilling tools, drive clamps, and the drive head. A length of casing is attached to the previous length already set. A drive head is attached to the upper end of the casing to protect it from the driving blows of the drive clamp, which is attached to the drill stem. When the drill is lowered into the length of casing and subsequently raised and lowered, the action of the dropping clamp on the drive head forces the casing into the drill hole.

Wells constructed using rotary methods are not usually cased until drilling is completed. Since the casing is smaller than the drilled hole, no driving is required. In some instances, a casing is installed concurrently with drilling, such as with the use of dual-rotary or cable tool drilling methods.

Special situations. If the formation being penetrated could likely cave equally throughout the full depth of the well, a single casing is usually sufficient. In these situations, the sand and gravel caves in around the outside of the casing and closes the space between the drill hole and the casing.

If additional protection is desired against corrosion and pollution, an outer casing may be installed and the annular space between the casings filled with cement grout. With this type of installation, the outer casing may be either left in place or withdrawn completely. If withdrawn, the grout is placed as the temporary casing is removed. The temporary casing is generally one pipe size larger in diameter than the outside diameter of the couplings of the protective casing. This type of grouted installation may also be used where the water-bearing formation underlies clay, hardpan, or other stable formations.
Where the well penetrates water-bearing rock underlying unconsolidated material, the casing is driven into the rock to obtain a good seal. Unfortunately, a tight seal that will prevent pollution or the unconsolidated material above from entering the well is not guaranteed. One way to obtain additional protection is to drive the casing down to stable rock. The rock is then drilled and under-reamed to a diameter that is 2 in. (50 mm) larger than the outside diameter of the shoe, to a depth of 10 ft (3 m). The under-reamed portion of the drill hole below the bottom of the casing is filled with cement grout, and the casing is driven to the bottom of the hole. Before drilling is resumed, the cement grout is allowed to set for several days, providing a good seal. Drilling is then continued, and the cement grout drilled out. An open, uncased hole is then constructed in the water-bearing rock below this point.

Fractured formations, such as limestone, that are channeled or creviced frequently yield polluted water or water of poorer water quality than desired. These formations should be protected unless overlain with an adequate thickness of unconsolidated formations or a competent layer of low-permeability rock. Under such circumstances, the well can be protected if it is watertight to a depth greater than that of the deepest existing well of questionable construction in the area and substantially below the lowest anticipated water level. The watertight construction is achieved by drilling the hole in the creviced rock that is 2 in. (50 mm) larger than the outside diameter of the casing couplings and filling the annular space between the drill hole and the outside of the casing with cement grout. In some areas, such construction may not be realistic, because available water is cased off. Other methods of assuring adequate water quality protection may be necessary.

Cement Grouting

Water wells are cemented, or grouted, and sealed for the following reasons:

- To protect the water supply against pollution
- To seal out water of an unsatisfactory quality
- To increase the life of the well by protecting the casing against exterior corrosion
- To stabilize soil or rock formations of a caving nature
- To prevent entry of stormwater runoff around the casing

When a well is drilled, an annular space surrounding the casing is normally, and sometimes purposely, produced. Unless this space is sealed, a channel exists for the downward movement of water. In loose caving formations such as sand, the opening is usually self-sealing. In clay or other stable formations, this space must be cemented to prevent contamination from the land surface or creviced formations connecting with the surface.

When formations located below the depth of the protective casing are known to yield water of an unsatisfactory quality, such formations may be sealed off with liners set in cement grout for their entire length, which may be as much as several hundred feet deep. When a casing is extended to a consolidated formation lying below an unconsolidated formation, the best way to prevent sand or silt from entering the well at the bottom of the casing is by under-reaming and cementing. The casing exterior is protected against corrosion by encasing it in cement grout, as described earlier in the section on casing installation. A minimum grout thickness of 2 in. (50 mm) is recommended and may even be required by some regulatory agencies.
Materials. Materials used for cementing wells should facilitate proper placement and assume a permanent and durable form. Portland-cement grout, properly prepared and handled, meets these requirements adequately.

Proper preparation of the grout mixture is very important. Best results are obtained from neat cement and water mixed in the ratio of one bag of cement to not more than 51/2 gal (20 L) of clean water. Under certain conditions, other materials may be used to accelerate or retard the time of setting, to lubricate the grout mixture, and to provide binders for sealing large crevices. A minimum of 2 percent, and a not-to-exceed maximum of 5 percent, by weight, of bentonite clay should be added to neat cement grout to compensate for shrinkage. Regardless of the materials used, cement, additives, and water must be mixed thoroughly.

Bentonite-based grout mixtures
Bentonite grout mixtures (NGWA 1998) have a number of favorable characteristics including

1. Bentonite, unlike cement-based mixtures, remains plastic when installed as a grout as long as it does not dry out, and can be rehydrated if it does dry. High-active-solids bentonite seals do not crack or separate from surfaces. Low solids (or low-active solids) slurries will crack and separate in the vadose or unsaturated zone.

2. Plastic, hydrated bentonite expands to fill voids, displacing air or water and other fluids.

3. When properly prepared and emplaced, bentonite grout seals have hydraulic conductivities of 10⁻⁶ cm/sec or less, and reportedly as low as 10⁻¹² cm/sec. This very wide range is a result of such variables as placement method (and skill), bentonite type used, conditions of the solids in the mixture, and the environment into which the seal is placed.

4. Bentonite does not generate the heat of hydration experienced with cement, especially with larger annular radii (>2 in.).

Solids content and type. The amount of shrinkage is controlled by the bentonite grout's solids content, with bentonites that have high-reactive solids, content shrinking is far less than with low-solids types used in drilling fluid mixtures. Granular high-solids grades also have more dimensional stability than virtually liquid low-solids slurries (similar in some respects to the difference between neat cement and concrete). For these reasons, high-solids bentonites should be used instead of drilling mud bentonite for borehole sealing applications.

Bentonite solids are more desirable than other solids. Unlike concrete, the preferable solids in bentonite are clays that provide the bulk and dimensional stability (keeping the seal shape and size) in the bentonite gel matrix without increasing the permeability. Rock cuttings and sand have higher specific gravities than bentonite and tend to separate and sink in the hole. However, sand-dry bentonite mixtures (50:50) provide good stiff seals if emplaced so that separation is minimized (i.e., mixed in after the pump discharge and rapidly emplaced) and solids permitted to hydrate downhole.

Bentonite grouts may shrink if moisture is lost. The presence of saline groundwater, strong acids or bases, or some organic compounds in contaminated groundwater may also cause desiccation and shrinkage. At times, a more stiff “set” is preferred than can be provided by bentonite alone, which is plastic and somewhat compressible. Cement is sometimes recommended to be added to a primarily bentonite mixture to provide this stiffer finished product. However, cement constituents serve to destroy the sealing properties of sodium bentonites. The trade-off for stiffness
is generally in the form of a more brittle, more permeable seal. Calcium ions in the cement replace sodium ions by ion exchange, resulting in the clay particles settling closer together. On contact, the calcium ions link the platelets, causing flocculation. These changes are permanent once they are made.

In practice, major problems with cement addition to bentonite seals are the formation of cracks and failure to establish a seal with casing surfaces. This accounts for the generally higher permeability and may cause long paths of migration. For a stiffer, solid set, it is preferable to mix and place a very high-solids bentonite or bentonite-and-sand mixture, instead of adding cement. Mixing water quality should be fresh (not saline) and approximately of drinking water quality in total dissolved solids and calcium ion content. The water should be sanitary and free of foreign objects.

The grout must be applied in one continuous operation to assure a satisfactory seal and be entirely in place before the initial set. The grout must always be introduced at the bottom of the space to be grouted to avoid segregation of materials, inclusion of foreign materials, or bridging of the grout mixture, and if above the fluid level, leaving large packets of air in the annulus.

Methods. Various methods are used for placing grout, including the dump-bailer method, air or water pressure drive, and pumping. Other proprietary methods of grouting, not discussed here, are used by well cementing companies.

The dump-bailer method is perhaps the simplest. The cement grout is lowered in a dump bailer that discharges its load when it reaches the bottom of the hole. After the necessary amount of grout is placed in the well, the casing is pulled up far enough so that the shoe is above the grout. A plug is placed in the bottom of the casing, which is then driven to the bottom of the hole, displacing the grout into the annular space around the outside of the casing.

If the annular space outside the casing is of sufficient width (1 1/2 to 2 in. [40 to 50 mm]) to accommodate a grout (tremie) pipe, air or water-pressure drive is quite satisfactory. The tremie pipe should extend to the bottom of the annular space. Grout is then pumped into the pipe. The pipe should remain submerged in grout during the entire time the grout is being placed. The pipe may be left in place or gradually removed.

Grout pumping begins with installation of a pipe within the casing. The casing is suspended slightly above the bottom of the drill hole, and a suitable packer connection is provided at the bottom of the casing. The packer allows removal of the grout pipe and prevents grout leakage into the interior of the casing. Grout is pumped into the pipe and forced upward into the annular space. When the space is filled, the grout pipe is removed. Work on the well is not resumed for at least 72 hr, after which time the packer connection and plug are drilled out.

Screens

Generally, wells completed in unconsolidated formations, such as sands and gravels, are equipped with screens. Screens allow the maximum amount of water from the aquifer to enter the well with a minimum of resistance and prevent sand entering the well during pumping. Screens are sometimes installed in fractured formations that may collapse into the borehole, and trap equipment in the borehole.

Although a screen prevents sand from entering the well during pumping, a screen also allows fine formation particles to enter the well during the development process so they may be removed by bailing. At the same time, the large particles of sand are held back, forming a permeable, graded natural gravel screen around the well screen itself. In this way, the hydraulic conductivity of the water-bearing formation around
the well screen is greatly increased, resulting in lower velocity head loss and higher capacity per foot of drawdown.

Selection. Proper screen selection is extremely important in the design of a well drawing on unconsolidated aquifers. Selection is often a complicated matter that demands a highly specialized knowledge of well construction and operation. Consulting a reliable screen manufacturer is advised. Most manufacturers maintain a screen selection service and will make mechanical analyses of samples and recommend the proper opening.

Slot size. Depending on this type of well construction, the slot size is selected to permit a percentage of the formation material to pass through it. For naturally developed wells, this amount usually ranges between 35 percent and 65 percent, depending on uniformity of the material and the overlying formation. The size of screen openings, or the slot number, is usually expressed in thousandths of an inch as shown in Figure 4-3. The width of the slot, or slot size, is best determined with a mechanical sieve analysis of a sample of the water-bearing formation.

Representative samples of the formation must be selected for mechanical grain-size analyses. A complete descriptive log of the well should be submitted to the screen manufacturer with the samples. Information concerning the well diameter, aquifer thickness, transmissivity or hydraulic conductivity, and the desired well capacity should be included with the log.

An artificial gravel-pack well may be constructed to allow an increase in screen slot size. When a well screen is surrounded by an artificial gravel wall, the size of the openings is controlled by the size of gravel used and by the types of openings as depicted in Figure 4-4. For select gravel pack well construction, the passage of the pack material through the screen usually ranges between 10 and 30 percent, depending on the uniformity and gradation of the adjacent formations.

In the past, when casing slots were cut out with a knife or torch, with very little open area, the water slot velocity was of concern. To promote better and more efficient well construction, the design criteria for water entrance through the screen opening between 0.1 and 0.2 ft/sec (0.03 and 0.06 m/sec) was adopted by many regulatory agencies’ approval of construction. However, research and testing by D.E. Williams for the Roscoe Moss Company found that the actual head loss across just the thickness of a manufactured well screen, with the percentage of open area equal or greater than the specific yield of the aquifer was insignificant until the flow-through velocity exceeded 2 ft/sec (0.6 m/sec). The very low screen velocity criteria promoted the use of large-diameter well screens and more efficient well construction. Of greater importance is determining the degree of turbulent flow that will be generated in the water flow through the formation and gravel pack material surrounding the well screen.

Turbulent flow head losses around the well borehole increase with the square of this velocity. In laminar flow conditions, the head loss is linear with the velocity. In properly constructed and properly developed wells of high capacity, the well loss in head can be quite significant and turbulent flow in the well screen. Turbulent flow causes movement of sand particles and mechanical plugging of the gravel pack, as well as mechanical blockage and chemical precipitation of minerals around the outside of the well screen.
Nuzman (1989) accepted that the field coefficient of permeability represents the limit of laminar flow through the formation at a given temperature and viscosity of the water. The limit of laminar flow through the borehole wall could be defined by the following equation:

\[Q = \pi d L k \] \hspace{1cm} (4-1)

Converting the units to those commonly used in the field, the equation can be simplified to use the following units:

\[Q_L = \frac{K_s \cdot L_s \cdot D_w}{5,500} \] \hspace{1cm} (4-2)

![Scale of screen-opening sizes](image)
Figure 4-4 Cross-sectional comparison of well walls

Where:

\[Q_L = \text{Laminar flow limit in gallons per minute} \]
\[K_g = \text{Field coefficient of permeability in gpd/ft}^2 \]
\[L_s = \text{Length of screen or thickness of formation in feet} \]
\[D_w = \text{Diameter of the borehole in inches} \]

This equation assumes uniform vertical flow, which does not actually occur in wells. It has been found by field experience that the beginning of turbulent flow through the formation borehole is approximately 2.35 times the laminar flow limit as defined by Eq 4-2. Again, from field experience, it was found that the maximum limits of turbulent flow is approximately 12 times the laminar flow rate as defined by Eq 4-2.
In the work of Williams (1985), the point where the flow transitions from predominately turbulent flow to predominately laminar flow, assuming a critical Reynolds number of 30, was defined as

$$r_e = 0.9587 \frac{Q/L}{\theta}$$

(4-3)

Where:

- r_e = critical radius (in.)
- Q/L = specific aquifer discharge (gpm/ft)
- Q = discharge rate (gpm)
- L = Length of screen (ft)
- d = mean grain diameter (in.)
- Q_e = effective porosity

Velocity. Water entrance velocities through the screen openings should be between 0.1 and 0.2 ft/sec (0.03 and 0.06 m/sec). Such velocities will minimize head losses and chemical precipitation. For design of well screens installed in a radial collector well, an average velocity of about 0.033 ft/sec (0.01 m/sec) is used. Screen entrance velocities are computed by

$$V = \frac{Q}{A}$$

(4-4)

Where:

- V = velocity, in ft/sec
- Q = well capacity, in ft3/sec (1 ft3/sec = 449 gpm)
- A = effective area of screen, in ft2

The effective screen area must be estimated carefully. As much as 50 percent of the screen slots should be assumed to be blocked by particles even after proper well development. The total open area required must be determined by adjusting either the length or diameter of the screen, because the slot is not arbitrary.

Materials. Well screens are available in a wide range of materials, including plastic, mild steel, red brass, bronze, and stainless steel. Selection of a suitable material requires knowledge of soil and water corrosivity, intended use of the well, and anticipated cleaning or redevelopment methods. AWWA Standard A100-97 gives specific information and specifications for screen selection.

WELL DESIGN PROCEDURE

The well design procedure starts with some expectations of potential water yield from an aquifer. With many uncertainties, it is best to construct a small-diameter test well to ascertain the depth and thickness of the aquifer, conduct a pumping test and analyze the data to determine the transmissivity and hydraulic conductivity, and determine the water quality to be satisfactory or treatment needs. Typically the client has a need for a specific water yield, and the well designer must bring these inputs together to design a cost-effective and efficient well.

It is often convenient to start with the well screen diameter, which should be at least one pipe size larger than the largest diameter of the pumping equipment to be installed. If a shroud needs to be installed around a submersible pump and motor, then appropriate allowance in diameter needs to be made. If additional equipment is
to be installed such as a transducer or water level controls, then an increase of two pipe size diameters may be needed.

If gravel pack construction is to be used, then the borehole should meet minimum thickness requirements of 4 in. (16 mm) as specified in AWWA Standard A100-97. The purpose of Eq 4-2 is to help select an appropriate borehole diameter for the well construction procedure to be used. If the average hydraulic conductivity, length of well screen and minimum borehole diameter, and the limit of borehole diameter are input, the limit of laminar flow can quickly be calculated. This value may appear to be very low, but most high-capacity wells are operated in the turbulent flow range. Typically a flow yield of approximately 4 to 6 times the laminar flow rate will be cost-effective. The gravel pack thickness can be increased to the available yield. Unfortunately, in low-permeability aquifers, the maximum practical well borehole diameter will limit the water yield. Other limitations such as saturated thickness, available drawdown and static water level depths affect the available yield.

To aid in the well design procedure, Nuzman (1989) developed some rule-of-thumb ratios between transmissivity and well specific capacity:

\[
\begin{align*}
\text{Confined Aquifer} & \quad Q/s = \frac{T}{2200} \\
\text{Semi-confined aquifier} & \quad Q/s = \frac{T}{1700} \\
\text{Unconfined aquifier} & \quad Q/s = \frac{T}{1200}
\end{align*}
\]

These ratios were developed for a typical well radius of influence of \(1/2\) mi, and effective well diameter of 24 in., and assuming a storativity coefficient typical for the aquifer characteristics defined and the general assumptions of a theoretical aquifer (homogenous, isotropic, instant release from storage, infinite areal extent, and no leakage or recharge).

SANITARY PROTECTION

All water supply wells must be provided with adequate sanitary protection through proper construction and disinfection. This includes bentonite seals and protection against surface flooding.

Sanitary Construction

Wells must be developed from formations sufficiently deep to be protected from surface contamination. The minimum depth of safe water will vary with soil formations and surrounding conditions. In unconsolidated materials, water from depths of 25 ft to 30 ft (8 m to 9 m) or more is reasonably protected. The well casing should extend at least to that depth, and the screen should be set below it.

If a well must be developed at a depth less than that recommended in pervious material, an impervious layer of soil at the land surface can provide some protection. A layer of well-compacted clay at least 2 ft (0.6 m) deep should be placed on the land surface for a radius of 50 ft (15 m) around the well. The clay layer will minimize percolation from surface water and tend to divert it to the edge of the clay and away from the well. Every well casing should be grout sealed from land surface to the full depth of the root zone (30 ft to 50 ft), or standing water levels, whichever is less. Many regulatory agencies require a minimum of a 6 ft² square concrete pad around the well casing, sloped are 1 in./yd.

Another means of protection is to submerge the well screen below the pumping level of water in the well. The water level should not be drawn down into the screen section for long-term operations. Aeration of the well screen promotes aerobic bacteriological activity in deep wells, while cascading water causes air entrainment and
possible cavitation of the pump. However, for emergency use, it may be necessary to lower the pump into the screen section. Pump capacities should be selected to ensure from 5 to 10 ft (1.5 to 3 m) of water over the top of the screen at maximum drawdown. As discussed earlier, cementing provides sanitary protection.

Disinfection

During the process of well construction, the drill hole is subject to contamination from the land surface. Contamination can also be introduced by tools, drilling mud (in the case of the rotary method), the casing, and the screen. Normally, extended pumping would rid the well of this contamination; however, disinfecting the well with chlorine is faster.

Many disinfection methods are available, and should be selected by the engineer supervising the installation. As a general rule, sufficient chlorine must be thoroughly mixed with the water in the well casing to produce a concentration of at least 50 mg/L in the well when the disinfectant is pumped into the well. This solution must come in contact with the pump and discharge piping. Disinfection is achieved by adding chlorine in the casing and producing a mix by alternately starting and stopping the pump or by other methods. Contact time is a minimum of 24 hours.

The material used for gravel treatment, even though washed and clean, still carries contamination. Therefore, gravel-wall wells are sometimes difficult to disinfect following construction. In addition to the procedures outlined for disinfection, a tablet or powdered calcium hypochlorite can be occasionally added by hand to the gravel filling tube as the gravel is placed.

Even with disinfection, the water pumped from a well may still show evidence of contamination. Under such circumstances, a chlorinator can be installed at the well to treat all the water discharged to the system. In time (perhaps as long as three or four months), normal pumping will usually rid the well of contamination. During this period, a free chlorine residual will make it possible to use the water. Additional information on disinfection is available in AWWA Standard A100-97.

REFERENCES

This page intentionally blank.
Chapter 5

Quantitative Evaluation of Wells

After a qualitative evaluation of a potential groundwater source has confirmed the presence of water-bearing materials, it is necessary to determine how much water can be withdrawn. The basic aquifer parameters that must be evaluated are transmissivity and storage coefficient. What these parameters are and how they are measured is discussed in the first part of this chapter. This chapter also covers wellfield design, well losses and radial well yield, and groundwater modeling methods.

AQUIFER PARAMETERS

The most significant aquifer parameters are porosity, transmissivity, specific yield and specific retention, hydraulic head, and gradient. Porosity, specific yield, and specific retention describe the rock formation and quantities of water existing in the formation. Head and gradient determine how water moves through the formation and represent the mechanics of horizontal and vertical recharge to a well being pumped. Head and gradient are also used to analyze the transport of pollutants that may migrate to a well. Transmissivity indicates how easily water will move in the formation and is perhaps the most commonly used term by hydrogeologists. Figure 5-1 is a theoretical cube of sand, limestone, or other formation that stores or allows water to flow through it. From this diagram, groundwater flow can be easily understood.

The focus of much of this chapter is on the math associated with wells and well fields. It may be rigorous for some, although minimal calculus is involved, and the resulting equations can be used for hand calculations or entered into spreadsheet programs.
Porosity

The ratio of openings (voids) to the total volume of a soil or rock is referred to as porosity. Porosity is expressed either as a decimal fraction or as a percentage as shown in Figure 5-2. Thus,

\[
n = \frac{V_v}{V_t} = \frac{V_v}{V_t} \tag{5-1}
\]

Where:

- \(n\) = porosity, as a decimal fraction
- \(V_t\) = the total volume of a soil or rock sample
- \(V_s\) = the volume of solids in the sample
- \(V_v\) = the volume of openings (voids)

If the porosity determined using the above equation is multiplied by 100, the result is porosity expressed as a percentage.
Soils are among the most porous of natural materials because soil particles tend to form loose clumps and because of the presence of root holes and animal burrows. The porosity of unconsolidated sand and gravel depends on the range in grain size “sorting” and on the shape of the rock particles but not on their size. Fine-grained materials tend to be better sorted and have the highest porosity values. Table 5-1 lists selected values of porosity.

Porosity values determine the maximum amount of water that a rock can hold when it is saturated. Only a part of this water, however, is available to supply a well or a spring.

Specific Yield and Specific Retention

Hydrologists divide groundwater into the portion that will drain under the influence of gravity, which is called specific yield, and the portion that is retained as a film on rock surfaces and in very small openings, which is called specific retention. The physical forces that control specific retention are the same forces controlling the thickness and moisture content of the capillary fringe as depicted in Figure 5-3. Thus,

\[n = S_y + S_r \]

\[S_y = \frac{V_d}{V_t} \] and \[S_r = \frac{V_r}{V_t} \]

Where:
\(n \) = porosity
\(S_y \) = specific yield
\(S_r \) = specific retention
\(V_d \) = the volume of water that drains from a total volume of \(V_t \)
\(V_r \) = the volume of water retained in a total volume of \(V_t \)
\(V_t \) = total volume of a soil or rock sample

Table 5-2 lists selected values of porosity, specific yield, and specific retention.

<table>
<thead>
<tr>
<th>Material</th>
<th>Primary Openings</th>
<th>Secondary Openings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equal-size spheres (marbles)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loosest packing</td>
<td>48</td>
<td>—</td>
</tr>
<tr>
<td>Tightest packing</td>
<td>26</td>
<td>—</td>
</tr>
<tr>
<td>Soil</td>
<td>55</td>
<td>—</td>
</tr>
<tr>
<td>Clay</td>
<td>50</td>
<td>—</td>
</tr>
<tr>
<td>Sand</td>
<td>25</td>
<td>—</td>
</tr>
<tr>
<td>Gravel</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Limestone</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Sandstone (semiconsolidated)</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Granite</td>
<td>—</td>
<td>0.1</td>
</tr>
<tr>
<td>Basalt (young)</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

*Values are given in percent by volume
Hydraulic Head and Gradient

The depth to the water table affects the development of water supplies from unconfined aquifers. Where the water table is shallow, the land may become waterlogged during wet weather and unsuitable for residential and other uses. Where the water table is at great depth, the cost of constructing wells and pumping water for domestic needs may be prohibitively expensive.

The highest head occurs at points of aquifer recharge. The position and the slope of the water table (or of the potentiometric surface of a confined aquifer) is determined by measuring the position of the water level in wells from a fixed measuring point. The position of the water table at each well must be determined relative to a datum plane that is common to all the wells. The datum plane most widely used is the National Geodetic Vertical Datum of 1929, also commonly referred to as sea level.
Total head. The depth to water in a nonflowing well is subtracted from the elevation of the measuring point to determine the total head at the well. Total head, as defined in fluid mechanics, is the sum of elevation head, pressure head, and velocity head. Because groundwater moves relatively slowly, velocity head can be ignored. Therefore, the total head at an observation well involves only two components: elevation head and pressure head. Groundwater moves in the direction of decreasing total head, which may or may not be in the direction of decreasing pressure head.

The equation for total head h_t is

$$h_t = z + h_p$$ \hspace{1cm} (5-4)

Where:

z = elevation head, the distance from the datum plane to the point where the pressure head h_p is determined.

Hydraulic gradient. All other factors being constant, the rate of groundwater movement depends on the hydraulic gradient. The hydraulic gradient is the change in head per unit of distance in a given direction. If the direction is not specified, it is in the direction in which the maximum rate of decrease in head occurs.

As an example, if the movement of groundwater is in the plane shown in Figure 5-4, that is, if it moves from well 1 to well 2, the hydraulic gradient can be calculated from the information given on the drawing. The hydraulic gradient is h_L/L, where h_L is the head loss between wells 1 and 2, and L is the horizontal distance between them. For example, using the measurements given in Figure 5-4, this can be expressed as

$$\frac{h_L}{L} = \frac{(100 \text{ m} - 15 \text{ m})}{780 \text{ m}} = \frac{85 \text{ m}}{780 \text{ m}}$$ \hspace{1cm} (5-5)

When the hydraulic gradient is expressed in consistent units, as it is in the above example in which both the numerator and the denominator are in meters, any other consistent units of length can be substituted without changing the value of the gradient. Thus, a gradient of 5 ft/780 ft is the same as a gradient of 5 m/780 m. Hydraulic gradients are often in inconsistent units, such as meters per kilometer or feet per mile. A gradient of 5 m/780 m can be converted to meters per kilometer as follows:

$$\frac{5 \text{ m}}{780 \text{ m}} \times \frac{1,000 \text{ m}}{\text{km}} = 6.4 \text{ m/km}$$

![Figure 5-4 Definition of heads and gradients](image)
Calculating groundwater movement and hydraulic gradient. Both the direction of groundwater movement and the hydraulic gradient can be determined if the following data are available for three wells located in any triangular arrangement, such as that shown in Figure 5-5. These data are

- the relative geographic position of the wells,
- the distance between the wells, and
- the total head at each well.

Steps for determining direction of groundwater movement and hydraulic gradient are outlined below and illustrated in Figure 5-6.

1. Identify the well that has the intermediate water level, that is, neither the highest head nor the lowest head.
2. Calculate the position between the well having the highest head and the well having the lowest head at which the head is the same as that in the intermediate well.
3. Draw a straight line between the intermediate well and the point identified in step 2 as being between the well having the highest head and that having the lowest head. This line represents a segment of the water-level contour along which the total head is the same as that in the intermediate well.
4. Draw a line perpendicular to the water-level contour and through either the well with the highest head or the well with the lowest head. This line parallels the direction of groundwater movement.
5. Divide the difference between the head of the well and that of the contour by the distance between the well and the contour. The result is the hydraulic gradient.

Hydraulic Conductivity

The factors controlling groundwater movement were first expressed by Henry Darcy, a French engineer, in 1856. Darcy’s law is as follows:

\[Q = KA \left(\frac{dh}{dl} \right) \]

(5-6)
Where:

- \(Q \) = the quantity of water per unit of time
- \(K \) = the hydraulic conductivity, which depends on the size and arrangement of the water-transmitting openings (pores and fractures) and on the dynamic characteristics of the fluid (water), such as kinematic viscosity, density, and the strength of the gravitational field (also referred to as the coefficient of permeability)
- \(A \) = the cross-sectional area, at a right angle to the flow direction, through which the flow occurs
- \(dh/dl \) = the hydraulic gradient

Unlike rivers and streams, groundwater tends to move relatively slowly, often measured in feet per day or year. Because of this slow movement, groundwater flow is said to be laminar; that is, water particles tend to follow discrete streamlines and not to mix with particles in adjacent streamlines. As a result, the quantity of water \(Q \) is directly proportional to the hydraulic gradient, \(dh/dl \). *

If Eq 5-6 is rearranged to solve for \(K \), the following is obtained:

\[
K = \frac{Q dl}{Adh} = \frac{(m^3/d)(m)}{(m^2)(m)} = \frac{m^3}{md}
\]

(5-7)

Thus, the units of hydraulic conductivity are those of velocity (or distance divided by time). In Eq 5-7, however, the factors involved in the definition of hydraulic conductivity include the volume of water \(Q \) that will move in a unit of time (commonly, one day) under a unit hydraulic gradient (such as a meter per kilometer) through a unit area (such as a square meter). These factors are illustrated in Figure 5-7. Expressing hydraulic conductivity in terms of a unit gradient rather than an actual gradient at some place in an aquifer allows values of hydraulic conductivity for different rocks to be compared.

*Where hydraulic gradient is discussed as an independent entity, as it is in the subsection “Hydraulic Head and Gradient,” it is shown symbolically as \(h_L/L \) and is referred to as head loss per unit of distance. Where hydraulic gradient appears as one of the factors in an equation, as it does in Eq 5-6, it is shown symbolically as \(dh/dl \) to be consistent with other groundwater literature. The gradient \(dh/dl \) indicates that the unit distance is reduced to as small a value as one can imagine, in accordance with the concepts of differential calculus.

Figure 5-7 Definition of hydraulic conductivity
Hydraulic conductivity in rock. The hydraulic conductivity of rocks ranges through 12 orders of magnitude (Figure 5-8). Hydraulic conductivity not only varies by type of rock but may also be different from place to place in the same rock. If the hydraulic conductivity is essentially the same throughout an area, the aquifer is homogeneous. If the hydraulic conductivity differs from one part of the aquifer to another, the aquifer is heterogeneous.

Hydraulic conductivity may also vary by direction at any place in an aquifer. If the hydraulic conductivity is essentially the same in all directions, the aquifer is isotropic. If it varies by direction, such as differences between conductivity in the vertical and horizontal directions, the aquifer is anisotropic.

Although it is convenient in many mathematical analyses of groundwater flow to assume that aquifers are both homogeneous and isotropic, such aquifers are rare, if they exist at all. Hydraulic conductivity in most rocks and especially in unconsolidated deposits and in flat-lying consolidated sedimentary rocks is larger in the horizontal direction than in the vertical direction.

Hydraulic conductivity replaces the term “field coefficient of permeability” and should be used to refer to the water-transmitting characteristic of material in quantitative terms. However, the qualitative terms “permeable” and “impermeable” material are still commonly used.

Figure 5-8 Hydraulic conductivity of selected rocks
Capillarity and Unsaturated Flow

Most recharge of groundwater systems occurs during the percolation of water across the unsaturated zone. Both gravitational and capillary forces control the movement of this water.

Capillarity results from the mutual attraction (cohesion) between water molecules and the molecular attraction (adhesion) between water and different solid materials. Most pores in granular materials are of capillary size. Water is pulled upward into a capillary fringe above the water table to a height h_c above the water level. This action is the same as water pulled up into a column of sand whose lower end is immersed in water as Figure 5-9 and Table 5-3 show. The rise of water in the capillary fringe is inversely related to the capillary diameter (Figure 5-9).

A steady-state* flow of water in the unsaturated zone can be determined using a modified form of Darcy’s law. Steady-state unsaturated flow Q is proportional to the effective hydraulic conductivity K_e the cross-sectional area A through which the flow occurs, and gradients due to both capillary forces and gravitational forces. Thus:

$$Q = K_e A \left(\frac{h_c - z}{z} \right) \pm \left(\frac{dh}{dl} \right)$$ \hspace{1cm} (5-8)

Figure 5-9 Definition of capillarity and unsaturated flow

Table 5-3 Approximate height of capillary rise h_c in granular materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Rise, in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td></td>
</tr>
<tr>
<td>Coarse</td>
<td>5</td>
</tr>
<tr>
<td>Medium</td>
<td>10</td>
</tr>
<tr>
<td>Fine</td>
<td>15</td>
</tr>
<tr>
<td>Silt</td>
<td>40</td>
</tr>
</tbody>
</table>

*Steady state in this context refers to a condition in which the moisture content remains constant, as it would, for example, beneath a waste-disposal pond whose bottom is separated from the water table by an unsaturated zone.
Where:

\[Q = \text{the quantity of water} \]
\[K_e = \text{the hydraulic conductivity under the degree of saturation existing in the unsaturated zone} \]
\[A = \text{the cross-sectional area through which flow occurs} \]
\[(h_c - z)/z = \text{the gradient due to capillary (surface tension) forces} \]
\[dh/dl = \text{the gradient due to gravity}. \]

The plus/minus sign accounts for the direction of movement: plus for downward and minus for upward. For movement in a vertical direction, either up or down, the gradient due to gravity is 1/1, or 1. For lateral (horizontal) movement in the unsaturated zone, the term for the gravitational gradient can be eliminated.

The capillary gradient at any time depends on the length of the water column \(z \) supported by capillarity in relation to the maximum possible height of capillary rise \(h_c \) (Figure 5-9). For example, if the lower end of a sand column is suddenly submerged in water, the capillary gradient is at a maximum, and the rate of rise of water is fastest. As the wetting front advances up the column, the capillary gradient declines, and the rate of rise decreases.

The capillary gradient can be determined from tensiometer measurements of hydraulic pressures. To determine the gradient, the negative pressure \(h_p \) must be measured at two levels in the unsaturated zone, as Figure 5-10 shows. The equation for total head \(h_t \) is

\[h_t = z + h_p \]

Where:

\[z = \text{the elevation of a tensiometer}. \]

Substituting values in this equation for tensiometer number 1, the following is obtained:

\[h_t = 32 + (-1) = 32 - 1 = 31 \text{ m} \]

(5-9)

The total head at tensiometer number 2 is 26 m. The vertical distance between the tensiometers is 32 m minus 28 m, or 4 m. Because the combined gravitational and capillary hydraulic gradient equals the head loss divided by the distance between tensiometers, the gradient is

\[\frac{h_t}{L} = \frac{h_t(1) - h_t(2)}{z(1) - z(2)} = \frac{31 - 26}{32 - 28} = \frac{5}{4} \text{ m/m} = 1.25 \text{ m/m} \]

(5-11)

This gradient includes both the gravitational gradient \(dh/dl \) and the capillary gradient \((h_c - z)/z \). Because the head in tensiometer number 1 exceeds that in tensiometer number 2, the flow is vertically downward and the gravitational gradient is 1/1, or 1. Therefore, the capillary gradient is 0.25 m/m (1.25–1.00).

The effective hydraulic conductivity \(K_e \) is the hydraulic conductivity of material that is not completely saturated. It is less than the (saturated) hydraulic conductivity \(K_s \) for the material. Figure 5-11 shows the relation between degree of saturation and the ratio of saturated and unsaturated hydraulic conductivity for coarse sand. The \(K_s \) of coarse sand is about 60 m/d.
Transmissivity

The capacity of an aquifer to transmit water of the prevailing kinematic viscosity is its transmissivity. The transmissivity T of an aquifer is equal to the hydraulic conductivity of the aquifer multiplied by the saturated thickness of the aquifer. Thus,

$$ T = Kb $$

(5-12)

Where:

- $T =$ transmissivity
- $K =$ hydraulic conductivity
- $b =$ aquifer thickness.

As is the case with hydraulic conductivity, transmissivity is also defined in terms of a unit hydraulic gradient.

Recalling Darcy’s Law (Eq 5-6)

$$ Q = KA \left(\frac{dh}{dl} \right) $$

if the area A is expressed as aquifer thickness (b) times aquifer width (w); then

$$ Q = Kb w \left(\frac{dh}{dl} \right) $$

(5-13)
Next, substituting transmissivity T for Kb

$$Q = Tw \left(\frac{dh}{dl} \right)$$ \hspace{1cm} (5-14)

Eq 5-14 modified to determine the quantity of water Q moving through a large width W of an aquifer is

$$Q = TW \left(\frac{dh}{dl} \right)$$ \hspace{1cm} (5-15)

If Eq 5-15 is applied to Figure 5-12, the quantity of water flowing from the right-hand side of the drawing can be calculated by using the values

$$T = Kb = \frac{50 \text{ m}}{\text{d}} \times 100 \text{ m} = 5,000 \text{ m}^2/\text{d}$$ \hspace{1cm} (5-16)

$$Q = TW \left(\frac{dh}{dl} \right) = \frac{5,000 \text{ m}^2}{\text{d}} \times 1,000 \text{ m} \times \frac{1 \text{ m}}{1,000 \text{ m}} = 5,000 \text{ m}^3/\text{d}$$ \hspace{1cm} (5-17)

Eq 5-17 is also used to calculate transmissivity, where the quantity of water Q discharging from a known width of aquifer can be determined as, for example, with streamflow measurements. Rearranging terms, the following is obtained

$$T = \frac{Q}{W} \left(\frac{dl}{dh} \right)$$ \hspace{1cm} (5-18)

The units of transmissivity, as the preceding equation demonstrates, are

$$T = \frac{(\text{m}^3/\text{d})(\text{m})}{(\text{m})(\text{m})} = \frac{\text{m}^2}{\text{d}}$$ \hspace{1cm} (5-19)
Calculating transmissivity. Figure 5-13 illustrates the hydrologic case that permits calculation of transmissivity through the use of stream discharge. The calculation can be made only during dry-weather (baseflow) periods, when all water in the stream is derived from groundwater discharge. For the purpose of this example, the following values are assumed:

- Average daily flow at stream-gauging station A: 2.485 m³/d
- Average daily flow at stream-gauging station B: 2.355 m³/d
- Increase in flow due to groundwater discharge: 0.130 m³/d
- Total daily groundwater discharge to stream: 11,232 m³/d
- Discharge from half of aquifer (one side of the stream): 5,616 m³/d
- Distance x between stations A and B: 5,000 m
- Average thickness of aquifer b: 50 m
- Average slope of the water table dh/dl determined from measurements in the observation wells: 1 m/2,000 m

Using Eq 5-18

\[T = \frac{W}{Q} \times \frac{dl}{dh} = \frac{5,616 \text{ m}^3}{d \times 5,000 \text{ m}} \times \frac{2,000 \text{ m}}{1 \text{ m}} = 2,246 \text{ m}^2/\text{d} \]

(5-20)

The hydraulic conductivity is determined from Eq 5-12 as follows:

\[K = \frac{T}{b} = \frac{2,236 \text{ m}^2}{d \times 50 \text{ m}} = 45 \text{ m/d} \]

(5-21)
Because transmissivity depends on both K and b, its value differs between aquifers and from place to place in the same aquifer. Estimated values of transmissivity for the principal aquifers the United States range from less than $1 \text{ m}^2/\text{d}$ for some fractured sedimentary and igneous rocks to more than $1,000,000 \text{ m}^2/\text{d}$ for cavernous limestones and lava flows.

Finally, transmissivity replaces the term “coefficient of transmissibility” because, by convention, an aquifer is transmissive and the water in it is transmissible.

Storage Coefficient

The abilities (capacities) of water-bearing materials to store and transmit water are their most important hydraulic properties. These properties are given either in terms of a unit cube of the material or in terms of a unit prism of an aquifer, depending on the intended use. These abilities, as they relate to the two units of measurement, are

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit Cube of Material</th>
<th>Unit Prism of Aquifer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmissive capacity</td>
<td>Hydraulic conductivity K</td>
<td>Transmissivity T</td>
</tr>
<tr>
<td>Available storage</td>
<td>Specific yield S_y</td>
<td>Storage coefficient S</td>
</tr>
</tbody>
</table>

The storage coefficient S is defined as the volume of water an aquifer releases from or stores per unit surface area of the aquifer per unit change in head. The storage coefficient is a dimensionless unit, as the following equation shows, in which the units in the numerator and the denominator cancel.

$$S = \frac{\text{volume of water}}{\text{(unit area)(unit head change)}} = \frac{m^3}{(m^2)(m)} = \frac{m^3}{m^3} = \frac{m^3}{m^3}$$ (5-22)

The size of the storage coefficient depends on whether the aquifer is confined or unconfined (Figure 5-14). If the aquifer is confined, the water released from storage when the head declines comes from expansion of the water and from compression of the aquifer. Relative to a confined aquifer, the expansion of a given volume of water in response to a decline in pressure is very small. In a confined aquifer having a porosity of 0.2 and containing water at a temperature of about 59°F (15°C), expansion of the water releases about $3 \times 10^{-7} \text{ m}^3$ of water per cubic meter of aquifer per meter of decline in head.
To determine the storage coefficient of an aquifer as a result of expansion of the water, the aquifer thickness must be multiplied by 3×10^{-7}. If only the expansion of water is considered, the storage coefficient of an aquifer 33-ft (100-m) thick would be 3×10^{-5}. The storage coefficient of most confined aquifers ranges from about 10^{-3} to 10^{-5}. The difference between these values and the value as a result of expansion of the water is attributed to compression of the aquifer.

TRANSMISSIVITY AND STORAGE COEFFICIENT

Transmissivity T is equal to the hydraulic conductivity of the aquifer multiplied by the saturated thickness of the aquifer. Transmissivity is expressed in gallons per day per foot (gpd/ft) or square meters per day (m2/d). Values range from less than 1,000 to more than 1 million gpd/ft (less than 12 to more than 12,000 m2/d); values of 10,000 gpd/ft (120 m2/d) or more can be adequate for municipal and other large demand requirements.

The storage coefficient S represents the volume of water released from or taken into storage per unit of aquifer storage area per unit change in head. Values of S are expressed as a decimal. For unconfined aquifers, they generally are in the range of 0.01–0.3; for confined aquifers, most values are in the range of 0.005 to 0.00005.

Field Testing

Determining transmissivity or the storage coefficient by any means other than actual performance tests in the field is expensive, time consuming, and of questionable accuracy. Field-testing methods for determining these values have been developed and are thoroughly documented. These methods apply a regulated stress (pumping) to the formation and measure the effects (changes in water level) produced. The data are then analyzed and the transmissivity and storage coefficient are calculated.

To obtain the required data, one or more nearby wells tapping the aquifer serve as observation points, or a number of small-diameter test wells are installed in the area of investigation. The location of all wells must be accurately plotted on the area map so that the lateral distance and direction from the pumping well and the relative position with respect to other wells can be included in the analysis. No set number of wells is required, but having more wells reduces the likelihood of making an error. For best results, the outlying wells from the test well should be fully penetrating the source aquifer thickness being tested.

Water-Level Measurements

A benchmark should be used to survey the elevations of the wells. By accurately measuring water levels with respect to surface elevations, groundwater gradients can be determined. For this purpose and for the collection of water-level data during an aquifer performance test, a reference point on the casing should be established. All measurements to water levels are made from that point. Data sheets should be used that adequately identify each well by number or other description. When a water-level measurement is made, the date, time, and distance to water should be recorded.

Tape method. Water levels can be measured using a hand-held tape with a weight attached to the end to hold it straight and taut. The tape should be metal, and graduated in feet and in tenths and hundredths of a foot, or in metric units. Such graduations facilitate calculations by eliminating conversion of fractions to decimal equivalents, which tend to become unwieldy. By chalking the lower portion of the tape
and lowering it into the water until an even foot graduation coincides exactly with the reference point, the precise distance to water from the reference can be made by subtraction. The wetted chalk is easily identified, and direct readings to one hundredth of a foot can be made. A little practice quickly gives an observer adequate experience.

Other methods. Other methods of collecting water-level data include an electric tape that has an insulated wire with an open-end weighted electrode on the end. When the electrode enters the water, it completes a circuit that actuates a light, buzzer, meter, or other signal device. The distance to water is then read directly from gradations on the wire line. However, the graduations are not usually fine enough to permit a very accurate reading without some supplementary device. Float-actuated recording devices provide a means of collecting data continuously, but the response time drive is not fast enough for the early periods of a test program. Air-line devices have little value for controlled tests, except where water-level fluctuations are very large.

COLLECTION OF TEST DATA

Test data must be collected and recorded carefully. Because water-level data are commonly plotted on a logarithmic time scale, the measurement increments should coincide with the plotting technique.

Collection Schedule

A collection schedule in minutes (min) that can be easily followed and provides adequate data is shown below:

1 reading at zero time total elapsed time = 0 min
1 reading each 1 min for 10 min total elapsed time = 10 min
1 reading each 2 min for 10 min total elapsed time = 20 min
1 reading each 5 min for 20 min total elapsed time = 40 min
1 reading each 10 min for 60 min total elapsed time = 100 min
1 reading each 20 min for 80 min total elapsed time = 180 min

All times are calculated from the precise instant that the pump is turned on or off, which is designated as zero. If the test extends beyond 24 hr, subsequent measurements can be made at about 4-hr intervals. The timing of measurements at the onset of the test is critical. Each well should have at least one observer equipped with measuring devices and a synchronized stopwatch. After 180 min, measurements do not have to be made at a designated instant, but an accurate record for the exact time of each measurement should be maintained.

ANALYSIS

The following discussion of common procedures for analyzing aquifer test data is adapted from Brown (1953). Other references are also available (see the bibliography at the end of this chapter).

All procedures discussed here are designed to yield information on aquifer performance, not well performance. Each method will involve turning a pumped well on or off and observing what happens to the water level in nearby observation wells. All methods use the Theis nonequilibrium formula or modifications of the formula. The formula, developed by C.V. Theis, takes into account the time that has elapsed since pumping began or ceased.
Ideally, all wells used in the analysis should fully penetrate the aquifer. Some departures from this requirement can be tolerated, but the construction details of the wells are required. Any pumps in the area that are not involved in the test should be stabilized before an aquifer test and maintained for the duration of the test. During the test, well pumping should be at a steady unvarying rate, and carefully measured. The pumping rate and water-level data should be carefully computed and plotted. Each method uses the Theis formula to analyze variations in drawdown with time, or variations in drawdown with distance from the pumped well.

Hypothetical Test Setup

A hypothetical test setup is shown in Figure 5-15. This illustration depicts a sand aquifer that is confined above and below by relatively impermeable clay. One well will be pumped at 500 gpm and water-level changes in wells 1 and 2 will be measured. The wells fully penetrate the aquifer and, as best can be determined from the sectional view, the aquifer extends laterally to infinity, relative to the effects of pumping. No nearby wells are pumping that might affect the test. The observation wells could have been located anywhere in the general vicinity of the pumped well, but, for convenience, they were placed in a straight line.
A family of type curves has been developed to facilitate aquifer evaluation under a variety of conditions. The basic formulas are

\[T = \frac{114.6 \cdot Q \cdot W(u)}{s} \]

(5-23)

Where:
- \(T \) = the transmissivity of the aquifer, in gallons per day per foot
- \(Q \) = the discharge rate of the well, in gallons per minute
- \(u \) = for any given formation, is proportional to the ratio of \(r^2/T \)
- \(W(u) \) = the "well function of \(u \)" is determined from calculated tables from each value of \(u \)
- \(s \) = the drawdown at any point under study in the vicinity of the discharging well, in feet

\[u = 1.87 \cdot \frac{r^2S}{Tt} \]

(5-24)

Where:
- \(r \) = the distance from the discharging well to the point where the drawdown is being observed, in feet
- \(S \) = the aquifer storage coefficient
- \(T \) = the transmissivity of the aquifer
- \(t \) = the elapsed time since discharge began, in days

Confined aquifers. A confined, or artesian aquifer is confined above and below by relatively impermeable materials. The aquifer is homogeneous and isotropic, uniform in structure, and with the same physical and hydraulic properties in all directions. In practical terms, the thickness and actual extent of the aquifer should be known to permit the best possible interpretation of the test data.

Leaky aquifers. The modified nonequilibrium formula for leaky artesian conditions is based on the conditions for confined aquifers and on the following several assumptions:

- The aquifer is confined between an impermeable bed and a bed through which leakage can occur
- Leakage is vertical into the aquifer and proportional to the drawdown
- No water is stored in the confining bed
- The hydraulic head in the deposits supplying leakage remains constant

Unconfined aquifers. An unconfined, or water-table, aquifer does not have water confined under pressure beneath impermeable rocks. Water is derived from storage by gravity drainage of the interstices above the cone of depression, by compaction of the aquifer, and by expansion of water in the aquifer.

Properties of an unconfined aquifer can be determined by the Theis method under some limiting conditions. One of the basic assumptions of the Theis solution is that water is released from storage instantaneously with a decline in head. In a water-table aquifer, this is not always true, because water is derived partly from gravity drainage, and the effects of gravity drainage are not considered in the Theis
formula. However, with long pumping periods, the effects of gravity drainage become negligible so that the Theis solution can be used.

Drawdown Method

In the drawdown method, one well is pumped while the water levels are observed in two or more nearby wells. Figure 5-16 is a hydrograph—a plot of water level versus time—for observation well no. 1 (Table 5-4). Only the left half of Figure 5-16 should be considered at this point. Water-level measurements were taken for a day before the start of the test to determine whether any preexisting upward or downward trend would have to be considered during the test. No upward or downward trend of water levels is assumed in the area, and the measurements are plotted on a horizontal line. Referring to the portion of the hydrograph after pumping starts, the drawdown represents the difference between the water level observed in the well and the level at which the water would have stood had no pumping occurred. In the drawdown method, similar data will be collected for the observation wells and analyzed during the test. In the analysis, either the type-curve or straight-line solutions can be used.

Type-curve solution. Aquifer transmissivity and storage coefficients can be determined by comparing a logarithmic curve of time versus drawdown against one of a series of type curves developed from the Theis formula. The type curve is superimposed over the field-data plot, keeping the respective graphical axes parallel.

The curves are adjusted horizontally and vertically to obtain the best match of the two curves. An arbitrary match point is selected on the two graphs, and the field-curve and type-curve coordinates for substitution in the appropriate equation (Figure 5-17) are selected.

NOTE: Drawdown data are plotted on the left curve, recovery data on the right. These data are for observation well 1, located 500 ft from the pumped well. Points indicated by o are used in later analysis plots. Arrows indicate directions of increasing scale values.

Figure 5-16 Hydrograph for observation well no. 1
A different form of the type-curve solution is the distance-drawdown method. In this analysis, drawdown in three or more observation wells at different distances from the pumped well is compared with another interpretation of the type curve.

Detailed examples of analysis and variations of the type-curve form of solution are not given here; references are cited for additional details in the bibliography at the end of this manual. Scientists in the field of groundwater hydrology may develop individual preferences for specific analytical methods, but the fundamental principles and theory are common to all. The particular method favored will often be governed largely by the physical setup for collecting data. Development of computer programs has provided rapid advances to assist in the analysis of well-test data.

Table 5-4 Drawdown test data for observation wells

<table>
<thead>
<tr>
<th>Date (July 1989)</th>
<th>Hour</th>
<th>Elapsed Time</th>
<th>Drawdown* (ft)</th>
<th>Depth to Water (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>min</td>
<td>t (days)</td>
<td>t/r²</td>
</tr>
<tr>
<td>Well 1 (r = 500 ft)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2400</td>
<td>25.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0600</td>
<td>25.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>1200</td>
<td>25.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1800</td>
<td>1800</td>
<td>25.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2400†</td>
<td>2400†</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0004</td>
<td>4</td>
<td>0.00278</td>
<td>1.1×10⁻⁸</td>
</tr>
<tr>
<td></td>
<td>0015</td>
<td>15</td>
<td>0.0104</td>
<td>4.2×10⁻⁸</td>
</tr>
<tr>
<td></td>
<td>0055</td>
<td>55</td>
<td>0.038</td>
<td>1.5×10⁻⁷</td>
</tr>
<tr>
<td></td>
<td>0305</td>
<td>185</td>
<td>0.13</td>
<td>5.2×10⁻⁷</td>
</tr>
<tr>
<td></td>
<td>0600</td>
<td>360</td>
<td>0.25</td>
<td>1.0×10⁻⁶</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>720</td>
<td>0.50</td>
<td>2.0×10⁻⁶</td>
</tr>
<tr>
<td></td>
<td>2400</td>
<td>1,440</td>
<td>1.0</td>
<td>4.0×10⁻⁶</td>
</tr>
<tr>
<td>8</td>
<td>1200</td>
<td>2,160</td>
<td>1.5</td>
<td>6.0×10⁻⁶</td>
</tr>
<tr>
<td></td>
<td>2400</td>
<td>2,880</td>
<td>2.0</td>
<td>8.0×10⁻⁶</td>
</tr>
<tr>
<td>Well 2 (r = 1,000 ft)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2400</td>
<td>25.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0600</td>
<td>25.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>1200</td>
<td>25.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1800</td>
<td>1800</td>
<td>25.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2400†</td>
<td>2400†</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0030</td>
<td>30</td>
<td>0.0208</td>
<td>2.1×10⁻⁸</td>
</tr>
<tr>
<td></td>
<td>0155</td>
<td>115</td>
<td>0.080</td>
<td>8.0×10⁻⁸</td>
</tr>
<tr>
<td></td>
<td>0640</td>
<td>400</td>
<td>0.278</td>
<td>2.8×10⁻⁷</td>
</tr>
<tr>
<td></td>
<td>2400</td>
<td>1,440</td>
<td>1.0</td>
<td>1.0×10⁻⁶</td>
</tr>
<tr>
<td>8</td>
<td>2400</td>
<td>2,880</td>
<td>2.0</td>
<td>2.0×10⁻⁶</td>
</tr>
</tbody>
</table>

*Values in this column are derived from the depth-to-water measurements made in the observation well and given in the next column.

†Pumped well begins discharging at 500 gpm.
A second form of solution available for analyzing aquifer test data is an approximate version of the type-curve solution. Well-test data is plotted on semi-logarithmic paper and variations of the basic formula are used to compute the aquifer transmissivity and storage coefficient. The drawdown data tend to follow a straight line when plotted on semi-log paper (Figure 5-18).

Figure 5-17 Drawdown test data superimposed on Theis-type curve

Figure 5-18 Straight-line approximation of drawdown data analysis
Identification of Aquifer Boundaries

If an aquifer is not infinite, but has identifiable boundaries, the drawdown test data will be plotted differently. Two scenarios are discussed in the following paragraphs.

Impermeable-barrier effect. The effect of an impermeable barrier around an aquifer is shown in the plan and section views of a hypothetical situation in Figure 5-19. This case is the same as illustrated in Figure 5-15, except in the right-hand direction, the aquifer is cut off by an impermeable barrier caused by the rising side of a buried valley. This situation is quite common in the northern, once-glaciated parts of the United States. Indeed, an aquifer is often cut off in two parallel directions by buried-valley walls. For the purpose of this discussion, the effects of a single barrier are used. For convenience, the effects will be analyzed using the straight-line solution of drawdown analysis.

The early data occur in the expected manner, with a curved portion leading into a straight line. However, instead of staying on a straight line, the plotted data now curve off and eventually define a new straight line having twice the slope of the original (Figure 5-20). In other words, drawdown in the observation wells occurs at a faster rate than if the aquifer were of infinite extent. This effect is the same as having a second well (located across the boundary at the same distance) pumping at the same rate. Two wells operating identically is called the image well theory.

![Plan View](image1.png)

![Section View](image2.png)

NOTE: The situation is the same as in Figure 5-15, except that the aquifer is cut off by an impermeable barrier on the right side.

Figure 5-19 Hypothetical test situation—aquifer bounded by impermeable barrier
NOTE: The drawdown data depart from the theoretical straight-line plot because the impermeable barrier limits the extent of the aquifer and increases the drawdown rate.

Figure 5-20 Effect of impermeable barrier shown on straight-line drawdown plot

These data will determine not only the presence and kind of aquifer boundary, but an aquifer average position with respect to the pumped well. A detailed explanation of these procedures is given in numerous references as found in the bibliography at the end of this chapter.

Recharge effect of local stream. A recharging stream is shown in Figure 5-21. The aquifer is cut off on the right-hand side by a recharging stream—a situation that is often found in the field.

Figure 5-22 shows the recharge effect of this stream on the straight-line form of a drawdown plot. The plot begins as expected, with a curved portion leading into a straight line near point A. Instead of continuing on the straight line, as the data theoretically should for an infinite aquifer, the plotted data curves away above it and eventually defines a horizontal line. Thus, the rate of drawdown slackens, because of the water contributed to the aquifer by the stream, and gradually approaches a fixed value. This effect is the same as if a well, identical to the pumped well, was recharging the aquifer at an equal distance from and on the opposite side of the recharge boundary.

From these data, the presence and nature of the aquifer boundary can be interpreted, as well as its location with respect to the pumped well. A complete discussion of these methods is given in many texts on the subject.

Recovery Method

The recovery method of analyzing aquifer test data involves shutting off a pumped well and observing the recovery of water levels in nearby observation wells. In considering the types of solutions available, Figure 5-16 should be reviewed to see how recovery is measured. Recovery is the difference between the observed water level in the well at some time after pumping has stopped and the level at which the water would have been, had pumping continued. The hydrograph in Figure 5-16 shows that one day after pumping stopped, a recovery of 6.57 ft occurred, which equaled the drawdown observed one day after pumping began.

Type-curve solution. The same type curve as in the drawdown method is used, except that it has been inverted. The inverted curve indicates the rising levels in the observation wells. A plot of recovery measurements for the observation wells is an upside-down version of the drawdown plot. The recovery curve is compared with the inverted type curve to determine the transmissivity and storage coefficient. The values should be similar to those obtained using the drawdown method of analysis.
NOTE: The situation is again the same as in Figure 5-15, except that the aquifer is bounded on the right by a recharging stream.

Figure 5-21 Hypothetical test situation-aquifer bounded by recharging stream

NOTE: Instead of following the theoretical straight-line plot, the drawdown data curve shows an upward trend because the recharging stream replenishes the aquifer, reducing the drawdown rate.

Figure 5-22 Effect of recharging stream shown on straight-line drawdown plot

Straight-line solution. As in the drawdown method, both the type curve and the data curve are plotted on semi-log paper. The type curve is inverted to show a rising trend in the recovery period. With these modifications, the curves become straight lines. The same abbreviated equations are used to compute the transmissivity and storage coefficient.
In practice, using two kinds of type curves and two kinds of straight-line plots is not necessary. If a recovery test is essentially the reverse of a drawdown test, one type curve and one straight-line plot will serve equally well for either kind of test data. Both kinds of data can be recorded on the same plot to check their agreement.

Caution needs to be used in analyzing recovery data. Water can be extracted from the aquifer storage and very slowly recover from drainage from the unsaturated zone above. If the projected time to full recovery is significantly greater than the duration of pumping, the apparent continuous future safe yield of the aquifer is obtained by reducing the test pumping rate in proportion to the ratio of pumping time to recovery time. If a surface water source of infiltration or aquifer leakage is present, the recovery may occur more rapidly than the drawdown, in which case the reverse of the delayed recovery procedure does not apply. Further investigation is needed to determine the appropriate maximum water yield available. The recovery measurements should always be made following test pumping for at least 8 hr, and preferably a longer period.

Specific-Capacity Method

An abbreviated well-performance evaluation can be performed using a relatively short test to determine the specific capacity of the well. Specific capacity is defined as the yield of the well, usually expressed in gallons per minute per foot of drawdown (gpm/ft [m²/day]). The total drawdown in a well can be divided into two components—drawdown in the aquifer and drawdown related to well loss. Drawdown in the aquifer depends on the aquifer’s ability to transmit water, and generally does not change unless the aquifer is being depleted. Drawdown because of well loss is related to the ability of the well to transmit water, and may change with time, due to turbulent flow or head loss as the water passes through the screen or well bore. Some of the factors affecting well loss include changes in chemical or bacterial quality of the water, or changes in the mechanical condition of the well itself.

Monitoring specific capacity is a valuable tool for helping detect well maintenance problems before they become critical. Tests for specific capacity should not be substituted for the more involved tests described above when a more complete well and aquifer evaluation is necessary.

WELL-FIELD DESIGN

As Brown (1953) indicates, the proper design of wells and well fields is possible through measurable field data. The individual water system requirements, area development, geology, hydrology, and climatology must all be considered. The most desirable spacing between wells in a field, the effects of new wells on existing wells, and the optimum pumping rates and schedules can be made once the thickness and extent of an aquifer, its transmissivity and storage coefficient, and the nature and location of boundaries are known. Furthermore, these parameters are very useful when making an overall appraisal of the groundwater resources of an area and the potential for future water supply development. In all cases, these factors should be considered in a logical order as presented in the following paragraphs.

Pumping Rates

When numerical values have been assigned to transmissivity and the storage coefficient, the drawdown effects of pumping can be determined. These effects are for any quantity of water at any reasonable distance from the pumping well. A graphic representation (Figure 5-23) should be plotted of water levels against the logarithm of distance from the center of pumping for a given time period. A minimum continuous pumping period of 100 days is usually used as a conservative safety factor.
Well-Field Interference

Possible interference between wells in a well field should be determined before locating individual wells or multiple wells in a well field. This step will find the most efficient placement pattern and pumping rates.

As an example, assume that the data given in Figure 5-19 are representative of the hydraulic conditions. The available land for a well field measures 600 ft (182.9 m) on a side. Local health department regulations require a well distance of 200 ft (61 m) from property lines. The two most advantageous distributions of wells appear to be nine wells 100 ft (30.5 m) apart or four wells 200 ft (61 m) apart. From the results of drilling, testing, and calculations, the probable drawdown in the vicinity of a well can be determined for a given pumping rate. The difference between the total available and the calculated drawdown represents the allowable interference drawdown. The total interference drawdowns estimated for various pumping rates are as shown in Table 5-5.

Table 5-5 Allowable interference drawdowns for various pumping rates

<table>
<thead>
<tr>
<th>Pumping Rate</th>
<th>Probable Self Drawdown</th>
<th>Allowable Interference Drawdown</th>
</tr>
</thead>
<tbody>
<tr>
<td>gpm</td>
<td>ft</td>
<td>ft</td>
</tr>
<tr>
<td>100</td>
<td>4.4</td>
<td>31.6</td>
</tr>
<tr>
<td>200</td>
<td>8.6</td>
<td>27.4</td>
</tr>
<tr>
<td>300</td>
<td>12.7</td>
<td>23.3</td>
</tr>
<tr>
<td>400</td>
<td>17.2</td>
<td>18.8</td>
</tr>
<tr>
<td>500</td>
<td>21.0</td>
<td>15.0</td>
</tr>
</tbody>
</table>
Well-field design is balancing the cost of well and pump installation against the quantity of water produced to get the best returns. An installation with nine wells and pumping rates of 200 gpm (12.6 L/sec) each will serve as an example.

As indicated in Table 5-5, the total interference must not exceed 27.4 ft (8.3 m); in the nine-well pattern, this value is the combined effects of eight other wells. A corner well will be the least affected by the pumping of its companion wells, and the center well will suffer the greatest interference. For the center-well case, the combination of four wells at 100 ft (30.5 m) distance and four wells at 141 ft (43 m) distance will represent the total interference. Referring to the graph in Figure 5-19 and following the 200-gpm line, wells at 100 ft (61 m) will have an influence of 3.1 ft (1 m) per well, and wells at 141 ft (43 m) will have an influence of 2.9 ft (0.9 m) per well. The total interference expected would be 12.4 + 11.6 = 24.0, which is below the 27.4 ft (8.3 m) maximum allowed over the 100-day pumping period.

A four-well configuration with wells rated at 500 gpm (31.5 L/sec) would require the addition of influences from two wells at 200 ft (61 m) and one well at about 283 ft. The total influence in that case would equal 18.8 ft, which is above the allowable limit. A total of 2,000 gpm (86.3 L/sec) could be produced from this field from a square of eight wells, each pumping 250 gpm (15.8 L/sec), without a center well. The most practical solution, however, would probably be four wells pumping about 425 gpm (26.8 L/sec) each.

Any example can be handled in a similar manner if the T and S values are known and other variables can be reasonably approximated. For very large areas, models and computer calculations may have to be used. A number of field-performance tests for data collection to evaluate T and S for such use increases the reliability of calculated withdrawal effects.

WELL LOSSES

Drawdown values obtained for a single pumping well using the Theis formula represent only the head losses suffered by water movement through the formation under laminar flow conditions. The actual pumping level of a particular well cannot be calculated without considering high velocities and turbulence losses during pumping. At and near the well face, fluid velocities usually become so large that turbulent flow conditions exist. The magnitude of turbulence losses varies with each well because of differences in formation characteristics, screen slot sizes required, degree of well development, well diameter, and quantity of water being pumped. So many unknown quantities are involved in the calculation of these individual factors that they are usually lumped together under the heading of “well losses.”

Calculation

A method of approximating the well losses for a particular well has been presented by Rorabaugh (1953) as follows:

$$s_w = BQ + CQ^2$$ \hspace{1cm} (5-25)

Where:

- s_w = observed drawdown in the pumped well
- B = the coefficient of formation losses
- C = the coefficient of well losses
- Q = the pumping rate
The values of B and C may be calculated if proper test data are available. To collect such data, the finished well must be pumped at three to five increasing rates for equal periods of time and the drawdown measured for each pumping rate. When a full-scale aquifer performance test is not conducted, however, a step drawdown test can differentiate the observed losses in the pumping well. Additionally, this test makes it possible to quickly compare the magnitude of well losses to determine when a well needs cleaning or other repair work. Irregular increasing well loss with increasing pumping rates indicates unsatisfactory development of a new well, or deteriorating aquifer or well conditions in an old well. Small regular increases in well loss or decrease in well specific capacity due to transition to turbulent flow in the aquifer are normal.

A significant factor in well loss for sand and gravel wells is open screen area when the percentage of open area is substantially less than the specific yield of the aquifer. Research by D.E. Williams has shown that when the open area of the screen is greater than the specific capacity of the formation, the actual head loss across the well screen is insignificant until the velocity through the screen exceeds 2 ft/sec (0.6 m/sec). In an attempt to limit turbulent flow losses around the well bore hole, many regulatory agencies have prescribed velocities from screen openings between 0.1 and 0.2 ft/s (0.03 and 0.06 m/s) and a minimum thickness of gravel pack resulting in large-diameter well construction. High-velocity turbulent flow through the formation borehole results in higher pumping, clogging, and higher maintenance costs. In this case, velocity is a function of quantity and area and is easily approximated in the design stages discussed in the next chapter.

Because the quantity of water to be pumped from a well Q is more correctly established using formation loss and well interference, the open area of screen is the basic parameter to consider. Screen slot size should be selected for accurate sampling and proper sieve analysis. Thus, the screen diameter and length are the two variables in design.

In choosing a supply-well diameter, the pumping equipment that will be installed in the final well needs to be selected. An 8-in. (200-mm) turbine pump should not be installed in an 8-in. (200-mm) diameter well, for example. The minimum casing and screen diameter should be at least one pipe size larger than the largest diameter of the pumping equipment to be installed. This gap allows adequate space for pump installation and removal, efficient pump operation, and good hydraulic efficiency of the well.

Screen-length selection should incorporate more than a casual recollection of the aquifer thickness. The definition of transmissivity T incorporates flow through the total thickness of water-bearing material. If less than the total thickness is used, the value of T should be decreased. The Theis equation indicates that as T decreases, the formation drawdown will increase, although not directly proportional. If the screened portion of the formation is significantly less than one half of the formation thickness, the additional drawdown suffered may be significant. Therefore, as much of the aquifer as practical should be screened to eliminate losses of yield.

RADIAL-WELL YIELD

A detailed description of a radial well is given in chapter 4 of this manual. Yields of these types of wells depend on a permeable aquifer, a high water table, and an adequate, nearby source of water of acceptable quality. A radial well must be designed to allow the desired volume of water to enter the gallery and prevent fine-grained material from entering the well. Entrance velocities through the screen slot openings should average about 0.1 ft/s (0.03 m/s) or less. Capacities of collectors can vary considerably, depending on aquifer characteristics and well design. Yields may range upwards to several hundred gallons per minute (700 to 800 L per minute) per 1,000 ft (300 m) of gallery length.
A groundwater model represents a field situation. Groundwater modeling efforts predict hydraulic conditions in space and time. Models are valuable tools for addressing groundwater flow, contaminant migration, groundwater resources management, and the behavior of groundwater systems under stress. Three types of groundwater models are physical-scale, analog, and mathematical (numerical) models. This section focuses on the requirements, steps for application, limitations, and uses of the mathematical model.

A mathematical model is a simplified representation of a complex hydrogeological system. A “hydrogeological system” is defined as a set of physical, chemical, or biological processes acting upon input variables to convert them into output variables. A “variable” is a characteristic of a system that can be measured, and which may have different values when measured at different times. Validity of the prediction depends on how well the model approximates actual field conditions.

Numerical models begin with a basic equation of groundwater flow solved for the hydraulic head distribution in the aquifer. Solute-transport models add an equation for the changes in chemical concentration in the groundwater. Aquifer deformation models combine the flow equation with other equations that describe the changes in the physical structure of the aquifer with changes in the hydraulic head. Land subsidence due to groundwater withdrawal has been studied with the use of deformation models.

Accurate and adequate field data are essential when using modeling for predictive purposes. However, a model with inadequate data can be instructive, as it may identify those areas where detailed field data are critical to the success of the model. A mathematical model can manipulate a complex set of equations to provide a useful result at less expense than manual methods.

Computer models are most widely used at regional levels for management decisions. The groundwater issues are of a scale that makes computer modeling economically viable. Most regional groundwater modeling helps planners determine the groundwater flow system and the parameters affecting feasibility, investment, and operations decisions related to particular site-specific problems.

Objectives of Modeling

Some of the objectives of modeling are to

- predict the effect of pumping on groundwater levels
- predict the effect of installing additional pumping wells
- determine the effects of natural/artificial recharge
- determine the effects of recharge and barrier boundaries
- determine the effect of lithologic and stratigraphic variations (the transmissivity in x and y directions)
- predict the variation of concentration of contaminants from source to observation point
- determine the effects of retarding factors of contamination concentration (dilution, dispersion, adsorption, time-decay)
- predict the effects of remediation at different locations, both horizontally and vertically
Steps in Modeling

Before groundwater modeling is undertaken, it is important to define the problem to be modeled, the scope of the project, the acceptable level of confidence, and the scale of model.

Steps in groundwater modeling include (Figure 5-24)

- defining the problem to be addressed
- collecting and processing data
- designing a conceptual model (the physical setting)
- formulating a model
- selecting the model
- specifying the structure of the model, including its geometric features, dimensions and internal parameters, boundary conditions, and the initial conditions
- testing the sensitivity of the model
- calibrating and verifying the model
- designing and executing simulation experiments
- analyzing simulation data
- presenting results

Conceptual Models: Prerequisite Data

To convert a conceptual model into a mathematical model, a database of accurate information must be developed. The configuration of the aquifer to be modeled is required, including the following:

- The location
- Area extent
- The thickness of the aquifer and confining layers
- The locations of surface-water bodies and streams
- The boundary conditions of all aquifers

Required hydraulic properties include the following:

- The variation of transmissivity or hydraulic conductivity and storage coefficient of the aquifers
- The variation of hydraulic conductivity and specific storage of the confining layers
- The hydraulic connection between the aquifers and surface-water bodies
- Hydraulic head, as indicated by water-table or potentiometric-surface maps
- Amounts of recharge to the aquifer by precipitation and natural stream flow
Figure 5-24 Steps for model application
To simulate stresses on a natural groundwater flow system, the locations, types, and amounts of any artificial recharge through time, such as impacts from recharge basins and wells or return flow from irrigation must be known. Also, the amounts and locations, through time, of groundwater withdrawals from wells need to be calculated. Changes in the amount of water flowing in streams and changes in the water levels of surface-water bodies should also be known.

The flow model is used to compute the direction and the rate of fluid movement. The solute-transport equations are used to determine movement of contaminants. The information required for solute-transport models includes

- the distribution of effective porosity
- aquifer dispersivity factors
- fluid-density variations
- concentrations of solute(s) distributed throughout the aquifer
- the locations and concentrations of the contaminants
- the retardation factors for the specific solutes with the specific rocks and soils of the area

Model Calibration

When a model is calibrated, it will produce field-measured hydraulic heads at nodal points in the grid for a given combination of parameters and boundary conditions. Calibration requires adjusting the input data until computed values match the field values. Input data are hydraulic conductivity, transmissivity, storage coefficient, and recharge.

A mathematical model is calibrated by taking the initial estimates of the aquifer parameters, solving the equations, and comparing the results to known conditions of the aquifer under steady state groundwater head. A water-table or potentiometric-surface map is used for calibration. Water-level data are recognized as more accurate than the distribution of aquifer parameters and/or amount of recharge. The values for the aquifer parameters and recharge are varied until the model closely reproduces the known water-table or potentiometric-surface condition. The calibration process can take as many as twenty to fifty trial-and-error simulations before a desired level of calibration is achieved.

The ability of a calibrated model to duplicate current groundwater system behavior does not necessarily verify its ability to predict future cause and effect relations. A calibrated model must be verified for any historical changes (transient conditions) before it can be used to predict.

Model Verification

A mathematical model must be capable of simulating historical hydrologic events for which field data are available. A model is verified by comparing results to historical records. A transient response of the model is obtained and compared with a known transient condition in the aquifer. If the water levels through time and the locations and withdrawal rates from wells are known, the model should reproduce the known water-level changes. If the historical records are not reproduced to a desired degree of accuracy, the model parameters can be adjusted and the verification repeated. This process should eventually result in a verified model. Once the model has been verified against a transient event, it should be checked against the steady-state condition to ensure that it is still calibrated. Unfortunately, most mathematical models are not field verified, as this is time-consuming and expensive.
Limitations

Modeling groundwater flow and transport of a single nonreactive contaminant in saturated porous media is a relatively simple process. Modeling becomes complicated in aquifers of partial saturation, where there is fracturing or the existence of reactive contaminants, or if several mobile fluids are involved. Groundwater flow in fractured media is complex and difficult to predict at a given site unless extensive information is available about the fracture network. Recent research has made some advancement in the understanding of fracture and matrix flow in fractured media. Over-simplification, such as assuming that the effects of individual fractures will “average out,” can produce errors, particularly when models are used in predicting the flow and movement of contaminants.

Modeling contaminant transport depends on the compound and its phase. Transportation of dilute, nonreactive aqueous phase solutes is well understood, with the exception of the effects of temporal and spatial variability within the aquifer. Studies indicate that real-world contaminant plumes have complex and difficult-to-predict three-dimensional structures in soils that are heterogeneous. Modeling reactive solutes is more complex because chemical rather than hydrologic process may govern the behavior and movement of plume.

Without a modeler’s adequate understanding of the hydrogeologic setting, the groundwater system, chemical characteristics, and movement of contaminants, modeling results will provide uncertain predictions. Uncertainty in modeling includes

- numerical errors
- inadequate parameter estimation
- inability to precisely describe the natural variability of model parameters (e.g., hydraulic conductivity) from a finite and usually small number of measurement points
- inherent randomness of geologic and hydrogeologic processes over the long term
- inability to measure or otherwise quantify certain critical parameters (e.g., features of the geometry of fracture networks)
- conceptual deficiencies
- biases or measurement errors that are part of common field methods
- establishing values of controlling parameters such as velocity, effective porosity, diffusion coefficient, and dispersivity, which are difficult to measure or estimate because these features vary spatially

Because of these uncertainties, any single source of information should not be relied on when formulating regulations, evaluating water resources, cleaning up an aquifer, or protecting public health. Careful field work and confirmation of conditions are required to perform a quantitative and defensible assessment of the model’s accuracy.

Applications

Properly applied models are useful tools to

- assist in problem evaluation
- conceptualize and study flow processes
• recognize limitations in data and guide collection of new data
• design remedial strategies
• provide additional information for decision making

Groundwater models are valuable tools that can be used to help understand the movement of water and chemicals in the subsurface. The results of model application are dependent on the quality of the data used as input for the model. Generally, site-specific data are required to develop a reliable model of a site. There are inherent inaccuracies in the theoretical equations, the boundary and other conditions, and in the computer codes. Therefore, the results must be evaluated with other information about site conditions to make decisions about groundwater development and cleanup.

Federal and state agencies have guidelines that encourage the use of mathematical models. Some government regulations require modeling for long-term predictions of water resources and potential chemical migration. Models used in regulatory or legal proceedings should be available for evaluation, to determine the application of the model to a particular site and quality of the model. Issues such as the extent to which equations describe the actual processes and the steps taken to verify that the code correctly solves the governing equations and is fully operational (i.e., code verification) should be considered.

Lists of published models are available that can be selected for a particular application and site. Government officials may be reluctant to accept a model that has not been approved previously by the agency. Getting governmental approval of an alternate model may be a lengthy process.

Published Mathematical Models

Many mathematical models have been developed, debugged, and applied to field situations. An existing appropriate model is more cost-effective than developing new models. Groundwater models do, and should, vary in complexity because of the variation in hydrogeology. While more complex models increase the range of situations that can be described, increasing complexity requires more input data, requires a higher level and range of skill of the modelers, and may introduce greater uncertainty in the output if input data are not available or of sufficient quality.

For more information on published models in the public domain and readily available go to www.usgs.gov or www.epa.gov.

REFERENCE

BIBLIOGRAPHY

Chapter 6

Well Pumps and Pumping

Pumps produce flow by transforming mechanical energy to hydraulic energy. Pump designs and applications are numerous, and energy specifications and ratings for pumps range from less than one to thousands of horsepower per pump. To understand pumps and how they work, understanding the basic terminology is helpful.

DEFINITIONS

Capacity. The rate of flow delivered by a pump, in units such as gallons per minute, cubic feet per second, or barrels per hour. To calculate the power needed or the size of prime mover required to produce a desired capacity, the rate of flow and total dynamic head must be determined.

Dynamic head. The resistance to flow produced by a system. Dynamic head is equal to the sum of static head, velocity head, and friction head.

Static head. The static suction head plus the static discharge head (Figure 6-1). To calculate static head, all measurements in pumping are vertical and the maximum drawdown is used as a reference. Measurements above this level are positive; those below, negative. The same measuring procedure can be used for both submersible and surface-mounted pumps.

Static suction head. Vertical measurement, in feet, of the distance from the water level in a well to the pump centerline.

Static discharge head. The distance measured vertically from the pump centerline to the water level in storage.

Velocity head. The height through which a buoy must fall freely to attain its velocity. In most cases, the velocity head is small and can be ignored. Table 6-1 provides a way to determine velocity head.
Figure 6-1 Schematic illustrating total static head

Table 6-1 Velocity-head data

<table>
<thead>
<tr>
<th>Velocity (V)</th>
<th>Velocity Head (h_v)*</th>
<th>Velocity (V)</th>
<th>Velocity Head (h_v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fps</td>
<td>ft</td>
<td>fps</td>
<td>ft</td>
</tr>
<tr>
<td>1</td>
<td>0.02</td>
<td>11</td>
<td>1.87</td>
</tr>
<tr>
<td>2</td>
<td>0.06</td>
<td>12</td>
<td>2.24</td>
</tr>
<tr>
<td>3</td>
<td>0.14</td>
<td>13</td>
<td>2.62</td>
</tr>
<tr>
<td>4</td>
<td>0.25</td>
<td>14</td>
<td>3.04</td>
</tr>
<tr>
<td>5</td>
<td>0.36</td>
<td>15</td>
<td>3.49</td>
</tr>
<tr>
<td>6</td>
<td>0.56</td>
<td>16</td>
<td>3.97</td>
</tr>
<tr>
<td>7</td>
<td>0.76</td>
<td>17</td>
<td>4.44</td>
</tr>
<tr>
<td>8</td>
<td>1.00</td>
<td>18</td>
<td>5.03</td>
</tr>
<tr>
<td>9</td>
<td>1.25</td>
<td>19</td>
<td>5.61</td>
</tr>
<tr>
<td>10</td>
<td>1.55</td>
<td>20</td>
<td>6.21</td>
</tr>
</tbody>
</table>

*$h_v = \frac{V^2}{2g}$; $g =$ acceleration due to gravity.
Friction head. The loss of energy due to fluid motion along the inner surfaces of pipe and through fittings. With no change in elevation, friction head is the amount of head necessary to push fluid through pipe and fittings at the required velocity. Table 6-2 can be used to determine friction head when various pipe sizes and different flow rates are used. Friction head loss through fittings must be included (Table 6-3). Head losses for fittings are expressed in equivalent feet of pipe. For example, the loss through a regular 4-in. 90° elbow is equivalent to the loss through 13 ft of 4-in. pipe at the measured flow rate.

To accurately calculate head loss, pressure expressed in pounds per square inch (psi) must be converted to pressure expressed in feet of head

\[
\text{head, in feet} = \frac{144}{w} \times \text{pressure, in psi}
\] \hspace{1cm} (6-1)

Where:

\[w = \text{specific weight, in pounds per cubic foot} \]

The specific weight of water at temperatures less than 85° F is 8.34 lb/gal or 62.4 lb/ft³; each foot of water causes a change in pressure of 0.433 psi. To change from feet of water to pounds per square inch, multiply by 0.433 or divide by 2.307. For example, the pressure in pounds per square inch at the bottom of a storage tank containing a 10-ft depth of water is

- pressure, in pounds per square inch = 10 \times 0.433, or
- = 10 \div 2.307
- = 4.33 psi

Net positive suction head (NPSH). The amount of pressure that prevents water from vaporizing, which can cause cavitation (the formation and collapse of water vapor bubbles in the flowing water) and damage a pump. The required or minimum NPSH usually is stated by the pump manufacturer. The available NPSH is approximately equal to the distance from the eye of the pump impeller to the water level in the well while pumping. The available NPSH must be at least equal to the required NPSH to prevent cavitation. If necessary, the required NPSH can be satisfied by lowering the pump in the well.

PUMP CLASSIFICATIONS

Several types of pumps are used today. Only those pumps generally used to pump water from wells are described in the following paragraphs.

Centrifugal Pump

A centrifugal pump uses centrifugal force to move a liquid through a change in elevation or against a total dynamic head. The pump consists of a suction nozzle, an impeller eye, an impeller (rotating element), a volute or diffuser, and a discharge nozzle. As fluid is drawn through the suction nozzle to the impeller eye, rotation of the impeller gives the fluid a high-velocity radial motion. Centrifugal force throws fluid from the outer tips of the impeller into the volute or diffuser and into the discharge line.
Table 6-2 Friction loss for water in ft per 100 ft (Schedule 40 Steel Pipe)

<table>
<thead>
<tr>
<th>Flow gpm</th>
<th>2 in.</th>
<th>2½ in.</th>
<th>3 in.</th>
<th>4 in.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$V_{ft/s}$</td>
<td>h_f</td>
<td>$V_{ft/s}$</td>
<td>h_f</td>
</tr>
<tr>
<td>25</td>
<td>2.39</td>
<td>1.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2.87</td>
<td>1.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>3.35</td>
<td>2.42</td>
<td>2.35</td>
<td>1.00</td>
</tr>
<tr>
<td>40</td>
<td>3.82</td>
<td>3.10</td>
<td>2.68</td>
<td>1.28</td>
</tr>
<tr>
<td>45</td>
<td>4.30</td>
<td>3.85</td>
<td>3.02</td>
<td>1.60</td>
</tr>
<tr>
<td>50</td>
<td>4.78</td>
<td>4.67</td>
<td>3.35</td>
<td>1.94</td>
</tr>
<tr>
<td>60</td>
<td>5.74</td>
<td>6.59</td>
<td>4.02</td>
<td>2.72</td>
</tr>
<tr>
<td>70</td>
<td>6.69</td>
<td>8.86</td>
<td>4.69</td>
<td>3.63</td>
</tr>
<tr>
<td>80</td>
<td>7.65</td>
<td>11.4</td>
<td>5.36</td>
<td>4.66</td>
</tr>
<tr>
<td>90</td>
<td>8.60</td>
<td>14.2</td>
<td>6.03</td>
<td>5.82</td>
</tr>
<tr>
<td>100</td>
<td>9.56</td>
<td>17.4</td>
<td>6.70</td>
<td>7.11</td>
</tr>
<tr>
<td>120</td>
<td>11.5</td>
<td>24.7</td>
<td>8.04</td>
<td>10.0</td>
</tr>
<tr>
<td>140</td>
<td>13.4</td>
<td>33.2</td>
<td>9.38</td>
<td>13.5</td>
</tr>
<tr>
<td>160</td>
<td>15.3</td>
<td>43.0</td>
<td>10.7</td>
<td>17.4</td>
</tr>
<tr>
<td>180</td>
<td>12.1</td>
<td>21.9</td>
<td>7.81</td>
<td>7.28</td>
</tr>
<tr>
<td>200</td>
<td>13.4</td>
<td>26.7</td>
<td>8.68</td>
<td>8.90</td>
</tr>
<tr>
<td>220</td>
<td>14.7</td>
<td>32.2</td>
<td>9.55</td>
<td>10.7</td>
</tr>
<tr>
<td>240</td>
<td>16.1</td>
<td>38.1</td>
<td>10.4</td>
<td>12.6</td>
</tr>
<tr>
<td>260</td>
<td>11.3</td>
<td>14.7</td>
<td>6.55</td>
<td>3.74</td>
</tr>
<tr>
<td>280</td>
<td>12.2</td>
<td>16.9</td>
<td>7.06</td>
<td>4.30</td>
</tr>
<tr>
<td>300</td>
<td></td>
<td></td>
<td>13.0</td>
<td>19.2</td>
</tr>
<tr>
<td>350</td>
<td></td>
<td></td>
<td>15.2</td>
<td>26.1</td>
</tr>
<tr>
<td>400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>450</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>550</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table shows average values of pipe friction for new pipe. For commercial installations it is recommended that 15 percent be added to these values because no allowance for aging of pipe is included.

Table continues on next page.
<table>
<thead>
<tr>
<th>Flow gpm</th>
<th>5 in. V ft/s</th>
<th>5 in. hf</th>
<th>6 in. V ft/s</th>
<th>6 in. hf</th>
<th>8 in. V ft/s</th>
<th>8 in. hf</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>2.57</td>
<td>0.487</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>2.89</td>
<td>0.606</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>3.21</td>
<td>0.736</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>3.53</td>
<td>0.879</td>
<td>2.44</td>
<td>0.357</td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>3.85</td>
<td>1.035</td>
<td>2.66</td>
<td>0.419</td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>4.17</td>
<td>1.20</td>
<td>2.89</td>
<td>0.487</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>4.81</td>
<td>1.58</td>
<td>3.33</td>
<td>0.637</td>
<td></td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>5.61</td>
<td>2.11</td>
<td>3.89</td>
<td>0.851</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>6.41</td>
<td>2.72</td>
<td>4.44</td>
<td>1.09</td>
<td>2.57</td>
<td>0.279</td>
</tr>
<tr>
<td>450</td>
<td>7.22</td>
<td>3.41</td>
<td>5.00</td>
<td>1.36</td>
<td>2.89</td>
<td>0.348</td>
</tr>
<tr>
<td>500</td>
<td>8.02</td>
<td>4.16</td>
<td>5.55</td>
<td>1.66</td>
<td>3.21</td>
<td>0.424</td>
</tr>
<tr>
<td>600</td>
<td>9.62</td>
<td>5.88</td>
<td>6.66</td>
<td>2.34</td>
<td>3.85</td>
<td>0.597</td>
</tr>
<tr>
<td>700</td>
<td>11.2</td>
<td>7.93</td>
<td>7.77</td>
<td>3.13</td>
<td>4.49</td>
<td>0.797</td>
</tr>
<tr>
<td>800</td>
<td>12.8</td>
<td>10.22</td>
<td>8.88</td>
<td>4.03</td>
<td>5.13</td>
<td>1.02</td>
</tr>
<tr>
<td>900</td>
<td>14.4</td>
<td>12.9</td>
<td>9.99</td>
<td>5.05</td>
<td>5.77</td>
<td>1.27</td>
</tr>
<tr>
<td>1,000</td>
<td>16.0</td>
<td>15.8</td>
<td>11.1</td>
<td>6.17</td>
<td>6.41</td>
<td>1.56</td>
</tr>
<tr>
<td>1,100</td>
<td>12.2</td>
<td>7.41</td>
<td>7.05</td>
<td>1.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,200</td>
<td>13.3</td>
<td>8.76</td>
<td>7.70</td>
<td>2.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,300</td>
<td>14.4</td>
<td>10.2</td>
<td>8.34</td>
<td>2.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,400</td>
<td>15.5</td>
<td>11.8</td>
<td>8.98</td>
<td>2.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,500</td>
<td></td>
<td></td>
<td>9.62</td>
<td>3.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,600</td>
<td></td>
<td></td>
<td>10.3</td>
<td>3.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,700</td>
<td></td>
<td></td>
<td>10.9</td>
<td>4.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,800</td>
<td></td>
<td></td>
<td>11.5</td>
<td>4.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,900</td>
<td></td>
<td></td>
<td>12.2</td>
<td>5.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,000</td>
<td></td>
<td></td>
<td>12.8</td>
<td>5.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,100</td>
<td></td>
<td></td>
<td>13.5</td>
<td>6.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,200</td>
<td></td>
<td></td>
<td>14.1</td>
<td>7.02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table shows average values of pipe friction for new pipe. For commercial installations it is recommended that 15 percent be added to these values because no allowance for aging of pipe is included.

Table continues on next page.
Table 6-2 Friction loss for water in ft per 100 ft (Schedule 40 Steel Pipe) (continued)

<table>
<thead>
<tr>
<th>Flow gpm</th>
<th>10 in.</th>
<th>12 in.</th>
<th>14 in.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V ft/s</td>
<td>h_f</td>
<td>V ft/s</td>
</tr>
<tr>
<td>650</td>
<td>2.64</td>
<td>0.224</td>
<td>2.64</td>
</tr>
<tr>
<td>700</td>
<td>2.85</td>
<td>0.256</td>
<td>2.85</td>
</tr>
<tr>
<td>750</td>
<td>3.05</td>
<td>0.294</td>
<td>3.05</td>
</tr>
<tr>
<td>800</td>
<td>3.25</td>
<td>0.328</td>
<td>3.25</td>
</tr>
<tr>
<td>850</td>
<td>3.46</td>
<td>0.368</td>
<td>3.46</td>
</tr>
<tr>
<td>900</td>
<td>3.66</td>
<td>0.410</td>
<td>2.58</td>
</tr>
<tr>
<td>950</td>
<td>3.87</td>
<td>0.455</td>
<td>2.72</td>
</tr>
<tr>
<td>1,000</td>
<td>4.07</td>
<td>0.500</td>
<td>2.87</td>
</tr>
<tr>
<td>1,100</td>
<td>4.48</td>
<td>0.600</td>
<td>3.15</td>
</tr>
<tr>
<td>1,200</td>
<td>4.88</td>
<td>0.703</td>
<td>3.44</td>
</tr>
<tr>
<td>1,300</td>
<td>5.29</td>
<td>0.818</td>
<td>3.73</td>
</tr>
<tr>
<td>1,400</td>
<td>5.70</td>
<td>0.940</td>
<td>4.01</td>
</tr>
<tr>
<td>1,500</td>
<td>6.10</td>
<td>1.07</td>
<td>4.30</td>
</tr>
<tr>
<td>1,600</td>
<td>6.51</td>
<td>1.21</td>
<td>4.59</td>
</tr>
<tr>
<td>1,700</td>
<td>6.92</td>
<td>1.36</td>
<td>4.87</td>
</tr>
<tr>
<td>1,800</td>
<td>7.32</td>
<td>1.52</td>
<td>5.16</td>
</tr>
<tr>
<td>1,900</td>
<td>7.73</td>
<td>1.68</td>
<td>5.45</td>
</tr>
<tr>
<td>2,000</td>
<td>8.14</td>
<td>1.86</td>
<td>5.73</td>
</tr>
<tr>
<td>2,500</td>
<td>10.2</td>
<td>2.86</td>
<td>7.17</td>
</tr>
<tr>
<td>3,000</td>
<td>12.2</td>
<td>4.06</td>
<td>8.60</td>
</tr>
<tr>
<td>3,500</td>
<td>14.2</td>
<td>5.46</td>
<td>10.0</td>
</tr>
<tr>
<td>4,000</td>
<td>16.3</td>
<td>7.07</td>
<td>11.5</td>
</tr>
<tr>
<td>4,500</td>
<td>12.9</td>
<td>3.65</td>
<td>10.7</td>
</tr>
<tr>
<td>5,000</td>
<td>14.3</td>
<td>4.47</td>
<td>11.9</td>
</tr>
<tr>
<td>6,000</td>
<td>17.2</td>
<td>6.39</td>
<td>14.2</td>
</tr>
<tr>
<td>7,000</td>
<td>16.6</td>
<td>5.32</td>
<td></td>
</tr>
</tbody>
</table>

Note: The table shows average values of pipe friction for new pipe. For commercial installations it is recommended that 15 percent be added to these values because no allowance for aging of pipe is included.

Table continues on next page.
Table 6-2 Friction loss for water in ft per 100 ft (Schedule 40 Steel Pipe) (continued)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>h_f Friction</td>
<td>h_f Friction</td>
<td>h_f Friction</td>
<td>h_f Friction</td>
</tr>
<tr>
<td>1,400</td>
<td>2.54</td>
<td>0.127</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,600</td>
<td>2.90</td>
<td>0.163</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,700</td>
<td>3.09</td>
<td>0.183</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,800</td>
<td>3.27</td>
<td>0.203</td>
<td>2.58</td>
<td>0.114</td>
</tr>
<tr>
<td>1,900</td>
<td>3.45</td>
<td>0.225</td>
<td>2.73</td>
<td>0.126</td>
</tr>
<tr>
<td>2,000</td>
<td>3.63</td>
<td>0.248</td>
<td>2.87</td>
<td>0.139</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.31</td>
<td>0.0812</td>
</tr>
<tr>
<td>2,500</td>
<td>4.51</td>
<td>0.377</td>
<td>3.59</td>
<td>0.211</td>
</tr>
<tr>
<td>3,000</td>
<td>5.45</td>
<td>0.535</td>
<td>4.30</td>
<td>0.297</td>
</tr>
<tr>
<td>3,500</td>
<td>6.35</td>
<td>0.718</td>
<td>5.02</td>
<td>0.397</td>
</tr>
<tr>
<td>4,000</td>
<td>7.26</td>
<td>0.921</td>
<td>5.74</td>
<td>0.511</td>
</tr>
<tr>
<td>4,500</td>
<td>8.17</td>
<td>1.15</td>
<td>6.45</td>
<td>0.639</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.19</td>
<td>0.372</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.59</td>
</tr>
<tr>
<td>5,000</td>
<td>9.08</td>
<td>1.41</td>
<td>7.17</td>
<td>0.781</td>
</tr>
<tr>
<td>6,000</td>
<td>10.9</td>
<td>2.01</td>
<td>8.61</td>
<td>1.11</td>
</tr>
<tr>
<td>7,000</td>
<td>12.7</td>
<td>2.69</td>
<td>10.0</td>
<td>1.49</td>
</tr>
<tr>
<td>8,000</td>
<td>14.5</td>
<td>3.49</td>
<td>11.5</td>
<td>1.93</td>
</tr>
<tr>
<td>9,000</td>
<td>16.3</td>
<td>4.38</td>
<td>12.9</td>
<td>2.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10.39</td>
<td>1.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.18</td>
</tr>
<tr>
<td>10,000</td>
<td>14.3</td>
<td>2.97</td>
<td>11.5</td>
<td>1.70</td>
</tr>
<tr>
<td>11,000</td>
<td>15.8</td>
<td>3.57</td>
<td>12.7</td>
<td>2.05</td>
</tr>
<tr>
<td>12,000</td>
<td>13.8</td>
<td>2.44</td>
<td>9.58</td>
<td>0.959</td>
</tr>
<tr>
<td>13,000</td>
<td>15.0</td>
<td>2.86</td>
<td>10.4</td>
<td>1.42</td>
</tr>
<tr>
<td>14,000</td>
<td>16.2</td>
<td>3.29</td>
<td>11.2</td>
<td>1.29</td>
</tr>
<tr>
<td>15,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table shows average values of pipe friction for new pipe. For commercial installations it is recommended that 15 percent be added to these values because no allowance for aging of pipe is included.
Table 6-3 Equivalent length of new straight pipe for valves and fittings for turbulent flow only

<table>
<thead>
<tr>
<th>Fittings</th>
<th>Pipe size, in.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/4</td>
</tr>
<tr>
<td>Screwed Steel</td>
<td>2.3</td>
</tr>
<tr>
<td>Screwed C.I.</td>
<td></td>
</tr>
<tr>
<td>Flanged Steel</td>
<td></td>
</tr>
<tr>
<td>Flanged C.I.</td>
<td></td>
</tr>
<tr>
<td>Screwed Steel</td>
<td>1.5</td>
</tr>
<tr>
<td>Screwed C.I.</td>
<td></td>
</tr>
<tr>
<td>Flanged Steel</td>
<td></td>
</tr>
<tr>
<td>Flanged C.I.</td>
<td></td>
</tr>
<tr>
<td>Screwed Steel</td>
<td>.34</td>
</tr>
<tr>
<td>Screwed C.I.</td>
<td></td>
</tr>
<tr>
<td>Flanged Steel</td>
<td></td>
</tr>
<tr>
<td>Flanged C.I.</td>
<td></td>
</tr>
<tr>
<td>Screwed Steel</td>
<td>.79</td>
</tr>
<tr>
<td>Screwed C.I.</td>
<td></td>
</tr>
<tr>
<td>Flanged Steel</td>
<td></td>
</tr>
<tr>
<td>Flanged C.I.</td>
<td></td>
</tr>
<tr>
<td>Screwed Steel</td>
<td>2.4</td>
</tr>
<tr>
<td>Screwed C.I.</td>
<td></td>
</tr>
<tr>
<td>Flanged Steel</td>
<td></td>
</tr>
<tr>
<td>Flanged C.I.</td>
<td></td>
</tr>
<tr>
<td>Screwed Steel</td>
<td>2.3</td>
</tr>
<tr>
<td>Screwed C.I.</td>
<td></td>
</tr>
<tr>
<td>Flanged Steel</td>
<td></td>
</tr>
<tr>
<td>Flanged C.I.</td>
<td></td>
</tr>
<tr>
<td>Screwed Steel</td>
<td>1.1</td>
</tr>
<tr>
<td>Screwed C.I.</td>
<td></td>
</tr>
<tr>
<td>Flanged Steel</td>
<td></td>
</tr>
<tr>
<td>Flanged C.I.</td>
<td></td>
</tr>
</tbody>
</table>

Tables continues on next page
Table 6-3 Equivalent length of new straight pipe for valves and fittings for turbulent flow only (continued)

<table>
<thead>
<tr>
<th>Pipe size, in.</th>
<th>Screwed Steel</th>
<th>Screwed C.I.</th>
<th>Flanged Steel</th>
<th>Flanged C.I.</th>
<th>Screwed Steel</th>
<th>Screwed C.I.</th>
<th>Flanged Steel</th>
<th>Flanged C.I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>.32</td>
<td>.45</td>
<td>.56</td>
<td>.67</td>
<td>.84</td>
<td>1.1</td>
<td>1.2</td>
<td>1.5</td>
</tr>
<tr>
<td>3/8</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1/2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3/4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1 1/4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1 1/2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2 1/2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3 1/2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>12</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>14</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>16</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>18</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>20</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>24</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Sudden Enlargement

\[h = \frac{(V_1 - V_2)^2}{2g} \] feet of liquid; if \(V_2 = 0 \)

\[h = \frac{V_1^2}{2g} \] feet of liquid

C.I. = Cast iron

Pipe size, in. = Inches

WELL PUMPS AND PUMPING

107
In both volute and diffuser types of centrifugal pumps, velocity head and, consequently, pressure are developed entirely by centrifugal force. In the volute-type pump (Figure 6-2), the impeller discharges fluid into a gradually expanding case. The volute efficiently changes part of the velocity head of the fluid leaving the impeller to pressure head. In the diffuser-type pump (Figure 6-3), the impeller is surrounded by progressively expanding passages of stationary guide vanes. The diffuser pump does a more complete job of converting velocity head to pressure and, consequently, is more efficient than the volute type.

Rotation of the impeller creates centrifugal force that moves liquid to the pump’s outer case. Low pressure is created at the eye of the impeller. If this pressure is lower than atmospheric pressure, the water will be pushed into the space between the blades of the impeller and fluid can be pumped.
The total suction lift or well depth below the pump centerline that can be pumped is regulated by the atmospheric pressure. If atmospheric pressure is 14.7 psi and a perfect vacuum is present, this pressure could support a column of water equal in length to $14.7 \times 2.307 = 33.9$ ft. If the centrifugal pump could produce a perfect vacuum, the total theoretical lift would be 33.9 ft. Because a perfect vacuum at sea level is impossible to produce with a pump, the practical suction height varies from 60 percent to 85 percent of the theoretical possible distance, depending on the efficiency of the installation. An altitude increases, the suction lift decreases. Table 6-4 presents values of the practical suction lift, in feet, for a single-stage centrifugal pump operating at different elevations. Because the use of a single-stage centrifugal pump is restricted to shallow wells (less than 20-ft [6-m] depths), other types of pumps are needed for deeper wells.

Deep-Well Turbine Pump

In deep-well pumping, the reciprocating pump was superseded by the centrifugal pump as increased water volumes became necessary. Diminishing water tables, excessive costs of developing the deep pits that are used to place centrifugal pumps within reasonable suction lifts, and difficulty in providing efficient drivers fostered development of the deep-well turbine pump. The deep-well turbine pump is not truly a turbine, but a combination of several stages of centrifugal impellers connected in series to a common shaft. The deep-well turbine pump as illustrated in Figure 6-4 consists of the following:

- a prime mover
- a suitable shaft and bearings connecting the power source on the surface to impellers located under the well water
- a series of impellers mounted in the bowl assembly at the lower end of the column that produces the required pressure head
- a discharge column pipe that channels water to the surface and acts as a housing and guide for the bearings and shaft assembly

The deep-well turbine pump was designed for capacities as low as 10 or 15 gpm (40 or 60 L/min) and as high as 25,000 gpm (95,000 L/min) or more, and for heads up to 1,000 ft (300 m). Most applications involve smaller capacities.

Table 6-4 Maximum practical suction lift, in ft, for single-stage centrifugal pump

<table>
<thead>
<tr>
<th>Elevation Above Sea Level (ft)</th>
<th>Temperature of Water, °F</th>
<th>Maximum Practical Suction Lift, ft</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>0</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>2,000</td>
<td>19</td>
<td>17</td>
</tr>
<tr>
<td>4,000</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>6,000</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>8,000</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>10,000</td>
<td>11</td>
<td>9</td>
</tr>
</tbody>
</table>
The pump illustrated in Figure 6-4 is a three-stage design. Each stage consists of a bowl, impeller, and diffuser manufactured as a standard unit. The number of bowls required for a particular installation depends on the dynamic head. The head determines the number of stages that must be provided. For large capacities, more than one pump may be needed. The capacity of the pumps used for bored wells is limited by the physical size of the well casing and by the rate at which water can be drawn without lowering its level to a point of insufficient pump submergence.

Submersible Pump

A submersible pump is actually a turbine pump with its motors close-coupled beneath the bowls of the pumping unit. The entire unit is installed under water. This construction eliminates the need for the surface motor, long drive shaft, shaft bearings, and lubrication system of the conventional turbine pump. Submersible pump motors are cooled by water flowing vertically past the motor to the pump intake. The motor is usually longer and of smaller diameter than a surface motor of the same horsepower. When a large-capacity submersible pump is needed, the manufacturer should be consulted for specific design and installation recommendations.

The purchase and installation costs for a submersible pump may be higher or lower than for a conventional pump, depending on setting depth, required head and capacity, water corrosivity, and other factors. Operating costs may also be higher or lower, based on motor efficiency, column bearing, hydraulic losses, cable losses, setting depth, and similar factors. A thorough analysis of all factors should be performed to compare surface and submersible motor-driven deep-well pumps for a specific installation.

Some inherent advantages of submersible pumps include

- use in crooked well casings that are unsuited for other types of pumps
- use in wells subject to flooding; the wells can be completely sealed
- minimization of surface equipment
- silent operation

Submersible pumps are especially useful for high-head, low-capacity applications, such as domestic water supply.

Propeller and Mixed-Flow Pumps

Propeller, axial flow, mixed flow, screw, and spiral type pumps have found limited use in the production of shallow wells. These designs have open impellers, similar to a ship’s propeller, and can be installed where flow is generally greater than 300 gpm (1,100 L/min), but where heads are under 40 ft (10 m).

Rotary Pump

A rotary pump combines the positive-discharge characteristics of the reciprocating pump with the constant, steady discharge of a centrifugal pump. Although a rotary pump uses a rotating element and appears similar to a centrifugal pump, positive-displacement causes the pumping action. Specially designed runners squeeze the water between them as they rotate, building direct water pressure.

A well-designed rotary pump will create a relatively high vacuum, comparable to a centrifugal pump. However, rotary pumps are usually not as efficient as centrifugal pumps. Rotary pumps need to be well-designed and constructed of the best material or they will wear much faster. Still, the rotary-type pump is widely used.
Rotary-Displacement Pump

A rotary-displacement pump (a positive displacement pump) is designed especially for relatively low capacities and for cased wells that are 4 in. and 6 in. (100 mm and 150 mm) or larger. Displacement of a piston in a cylinder of indefinite length causes the fluid flow. Figure 6-5 illustrates the pumping element, which consists of a main body made up of a stator and rotor, both of helical form, and the driveshaft assembly. The helices are worm threads; the stator has a double thread, and the rotor a single thread.

Figure 6-4 Vertical deep-well turbine pump Figure 6-5 Rotary-displacement pump
As the rotor rolls on the inner surface of the stator, liquid is squeezed ahead by the rolling action, with minimum turbulence. The rotor is made of heat-treated stainless steel that has a hard, chrome surface to resist corrosion and abrasion. A one-piece bronze strainer with a rubber-seated foot valve keeps the column full of water, and no pre-lubrication is necessary. The stator is made of cutless rubber and is highly resistant to abrasion. Grit momentarily depressed into the rubber by the rotors is washed away by water, when the rotor is released.

Rotary-Gear Pump

A rotary-gear pump consists of two moving parts, which are the pumping gears (Figure 6-6). These gears rotate in an accurately fitted case with close tolerance to ensure efficiency. The teeth of the pumping gears move away from each other and pass the inlet port at point A in Figure 6-6. This movement produces a partial vacuum by withdrawing air into the pump, where it is carried between the teeth of the pumping gears around both sides of the pump case at point B. The action of the teeth meshing at point C results in a condition similar to a valve forming a seal that forces the water into the discharge line.

Water flow is continuous and steady in a rotary-gear pump. The size of the pump and the rotational speed of the pump shaft determines the quantity of liquid pumped per hour. All internal parts, including the bearings, are lubricated by the flow of water. The rotary-gear pump is suitable for suction of 22–25 ft (7–8 m).

![Figure 6-6 Rotary-gear pump](image-url)
Reciprocating Pump

The oldest type of deep-well pump is the reciprocating or plunger-type pump (Figure 6-7). The reciprocating pump consists of a belt- or gear-driven head located above the highest water level in the well. A pulley drives a pinion shaft and, through suitable gearing, the plunger rod works up and down in the well. The prime mover is connected to the working, or pumping, barrel by pump rods.

The working barrel may be single or double acting. In the single-acting type, a check valve is located at the bottom of the cylinder and a similar valve is located in the plunger. The water flows into the working barrel through the check valve while the plunger is making its upstroke. On the downstroke, this water is held in the working barrel by the foot valve, and the plunger descends to the bottom of the barrel while the water passes through the valve in the plunger. On the next upstroke, the valve in the plunger closes, and the water above it is raised into the discharge pipe. At the same time, the foot valve opens and the cylinder again fills with water.
In small-diameter wells, a check may be set in the casing below the water level and the plunger sized to the casing, which then becomes the working barrel cylinder. In this case, the rods work through a stuffing box at the top of the casing, and water is discharged out of a side-opening tee.

Double-acting cylinders discharge water on each downstroke and upstroke of the working head. Double-acting pumps are capable of producing about 60 percent greater flow than pumps equipped with single-acting working barrels.

The capacity of this type of pump depends on the displacement of the liquid in the working barrel and the number of strokes per minute of operation. The pump is theoretically suitable for pumping wells of any depth, such depth being dictated by strength of material, power source, and economics.

Impulse Pumps

Impulse pumps produce pumping action by directly applying pressurized air or water. Airlift and jet impulse pumps are discussed in the following paragraphs.

Airlift pumps. Airlift pumps have capacities up to 2,000 gpm (8,000 L/min) and head to 1,000 ft (300 m). They are used in water wells, especially those containing sandy or corrosive fluids. The pump consists of a vertical pipe submerged in the well and an air-supply tube that feeds compressed air to the pipe at a considerable distance below the static water level. The mixture of air bubbles and liquid, lighter in weight than the liquid outside the pipe, rises in the pipe. A continuous flow of mixed water and air emerges at the top of the pipe, and new liquid from the well enters the pipe at the bottom (Figure 6-8).

Because the only head-producing mechanism is the difference in specific weight of the water-air mixture inside the pipe and the water outside the pipe, the head that can be obtained from an airlift pump depends on the distance between water level in the casing and the elevation at which air is introduced. If head, \(H \), is measured from the discharge pipe to water level and submergence, \(S \), is measured from water level to introduction of air, the ratio \(H/S \) is approximately 1 for most applications. The ratio can reach 3 for high heads (and low flows) and be as low as 0.4 for low heads (and high flows).

The volume of water pumped depends on the amount of air supplied. The pumping capacity increases with the amount of air supplied, up to an optimum. Because the discharge is a mixture of liquid and air, more air than optimum actually decreases the volume of water. Table 6-5 indicates approximate amounts, in cubic feet per minute, of free air required to pump 1 gpm of water against the heads of relative submergence shown.

The advantages of airlift pumps include

- no moving parts
- usability for corrosive and erosive fluids
- gentle action (has been used to remove sand from buried undersea objects)
- operation on air (can be used in explosive atmospheres)
- ability to be placed into wells of irregular shape where regular deep-well pumps cannot fit
The disadvantages of airlift pumps include low efficiency (less than 40 percent) and the need for very large submergences compared to conventional pumps.

Jet pumps. The jet impulse pump is shown in Figure 6-9. Water is forced down through a nozzle, forming a jet, and is discharged into the throat of a venturi diffuser at high velocity. The jet, or ejector, nozzle, converts the pressure into velocity. Water discharges into the diffuser, causing a low-pressure area. Water then flows in from the well and mixes in the diffuser with the driving water. While passing through the tube, most of this high velocity is transformed into pressure, and this delivers both the driving water and the water draw from the well to a high elevation.

![Figure 6-8 Airlift pump: (A) bottom inlet; (B) side inlet; (C) casing inlet](image)

Table 6-5 Air requirements* for airlift pumps

<table>
<thead>
<tr>
<th>H \ H/S†</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0.67</th>
<th>0.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td>0.22</td>
<td>0.15</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>150</td>
<td></td>
<td></td>
<td>0.7</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
<td>0.8</td>
<td>0.8</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>2.1</td>
<td>2.1</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>2.3</td>
<td>2.3</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>3.25</td>
<td>2.6</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>650</td>
<td>3.75</td>
<td>3.0</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>4.2</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>950</td>
<td>4.7</td>
<td>3.9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Number of cubic feet per minute of free air required to pump 1 gpm of water.
†H = head; S = submergence, in feet.
The efficiency of this type of pump is rather low, about 25 to 30 percent, but the pump has no moving parts submerged in the well and is quite appealing where high capacities are not required. A jet pump is best used for a lift of 25 ft (8 m) or more and capacities less than 50 gpm. This pump is often used for 120-ft to 150-ft (40-m to 50-m) lifts. In deeper wells, jet-pump efficiency becomes very low and another type of pump should be used. Jet pumps are light and can pump very muddy or sand-loaded water. Centrifugal-jet pump combinations have been used to pump wells as deep as 400 ft (120 m); centrifugal pumps alone usually are limited to 20- to 25-ft (6- to 8-m) well depths.

OPERATING CONDITIONS

Continuous operation of a pump is generally preferable to intermittent operation, but varying water demand usually requires some combination of off and on time. For improved well performance and pump life, system components and storage capacity should be designed to minimize the number of pump starts and stops per day. While pump starts should be minimized, starting a pump several times per day or even more than once per hour adds only slightly to power consumption and normally gives acceptable life to pumps, motors, and controls.

For continuous running, a pressure-regulating valve or variable-speed drive is used that can match the pump output with the system demand. Such systems usually run at very low efficiency during low-demand periods. The overall cost of equipment and operation should be thoroughly analyzed before adopting such a system.

To achieve the lowest-cost operation, a system must run its pump and motor or engine in the best efficiency ranges. Proper system components can assure this, but
WELL PUMPS AND PUMPING

changing conditions sometimes justify altering or reselecting components to maintain economical operation.

For each type of pump and prime mover, the operating conditions must be checked against manufacturers’ application information to ensure reliable operation. These operating conditions include the ambient air and water temperature ranges, pressures, flow, corrosive and abrasive factors, power supply variation, duty cycle, and protective devices.

PUMP SELECTION

Pump selection primarily depends on economics. The type of pump selected should give the best and most economical service over a prescribed number of years, when pumping under specific conditions. Before selecting a pump, different types of pumping arrangements should be investigated. For each arrangement, the design engineer should tabulate the initial cost, cost of installation, cost of operation, cost of maintenance, and expected equipment life. The combination that offers minimum investment and operational costs and fulfills system requirements should be obvious from the table.

Factors in Pump Selection

Some factors that must be considered before selecting a particular pump include the following:

- Capacity
- Depth of well and pumping level
- Inside diameter of well
- Condition of borehole (straight or crooked)
- Chemical and abrasive properties of the water (water quality)
- Total head
- Type of available power
- Costs

After a well has been tested for yield, operation requirements are dictated by demand. For some wells, a constant drawdown prevents production of sudden changes in water quality or of sand. The size and condition of the well borehole are very important. For example, if a well is too crooked for efficient operation of a deep-well turbine pump and use of a plunger-type pump is not desirable, a submersible pump may be economical, even though initial installation might be more expensive. A chemical analysis will determine if the pump needs to be built with materials to resist corrosion. Total head must be determined to lift or push the water to ground-surface elevation and to storage or delivery. Sufficient head needed to perform both tasks determines the pump horsepower required for accurate cost estimation.

Measuring pump performance. Energy cost is one of the principal expenses in pump operations. Pumps should be monitored to ensure that they are operating at or near peak efficiency. Total head, input horsepower, and quantity of water pumped must be measured.
The total dynamic head is the vertical distance from the water level in the well, while pumping, to the center of the free-flowing discharge, plus all losses between the point of entry of the water and the point of discharge. Losses in pipe can be obtained from Table 6-2, and pump-column losses are available from pump manufacturers’ catalogs.

The water horsepower required to pump water can be determined by the following equation:

\[
whp = \frac{gpm \times HT}{3,960}
\]
(6-2)

Where:

\(gpm\) = the flow rate, in gallons per minute

\(HT\) = total head, in feet

The horsepower calculated using Eq 6-2 is for all equipment (pumps, prime mover, and the like) operating at 100 percent efficiency. Because 100 percent efficiency cannot be attained, the brake horsepower, or horsepower necessary at the pump shaft, is used. Brake horsepower can be obtained from manufacturers’ data tables or performance curves. The pump efficiency \(E_P\) can be calculated from Eq 6-3

\[
E_P = \frac{whp}{bhp}
\]
(6-3)

The total horsepower required to operate the system is motor horsepower from Eq 6-4

\[
mhp = \frac{bhp}{EM} = \frac{gpm \times HT}{3,960 \times E_P \times EM}
\]
(6-4)

Where:

\(EM\) = the efficiency of prime mover

The efficiency of an electric motor as a prime mover is usually between 60 percent and 95 percent, depending on size and type, but an exact value can be obtained from manufacturers’ information.

The overall efficiency of a pump system depends on many factors, such as specific speed, relative size, service materials, and physical characteristics of fluid. Large centrifugal pumps have developed more than 92 percent efficiency. The efficiency of smaller pumps may, in some instances, be only 20 or 25 percent.

To determine the overall efficiency of a pumping system, the efficiency of the pump, prime mover, and drive need to be included. The overall efficiency \(E\) then can be determined with Eq 6-5

\[
E = E_P \times EM \times ED
\]
(6-5)

Where:

\(E_P\) = efficiency of the pump

\(EM\) = efficiency of the prime mover

\(ED\) = efficiency of the drive

\[
\text{power required} = \frac{\text{theoretical power required}}{E}
\]
(6-6)
If an electric motor is used to drive the pump, the actual power required will be equal to the theoretical power times the result of Eq 6-6. To determine the cost of operation, one must convert horsepower to watts. One horsepower is equivalent to 746 W and 1 kW is equal to 1,000 W; thus,

\[
\text{kW-h demand} = \frac{\text{gpm} \times H_T \times 0.746}{3,960 \times E} \tag{6-7}
\]

Power is usually sold in units of kilowatt-hours, and when Eq 6-7 is multiplied by number of hours used, Eq 6-8 is created

\[
\text{kW-h} = \frac{\text{gpm} \times H_T \times 0.746 \times \text{hours}}{3,960 \times E} \tag{6-8}
\]

Total costs can be determined by multiplying Eq 6-8 by cost per kilowatt-hour.

\[
\text{total cost} = \frac{\text{gpm} \times H_T \times 0.746 \times \text{hours} \times \text{cost/KW-h}}{3,960 \times E} \tag{6-9}
\]

or

\[
\text{power cost per hour} = \frac{\text{gpm} \times H_T \times 0.746 \times \text{cost/KW-h}}{3,960 \times E} \tag{6-10}
\]

If a different type of power is used, cost per hour can similarly be calculated. Standby equipment also should be provided.

In general, pumps are driven by direct connection to prime movers or through right-angle drives or belts. Electric motors and gasoline or diesel engines usually are prime movers for water-well pumps.

Operational Limits of Pumping Units

A single-stage centrifugal-type pump offers satisfactory and economical service, and sizes are available for practically any desired capacity. However, application is restricted, because the suction lift must not be more than about 22 ft (7 m), depending on elevation and temperature (see Table 6-4).

In a well that is clean and free of sand or grit, a rotary-type pump may perform as satisfactorily as a centrifugal pump, but rotary units are applicable only for operations that present low flow rates. Suction-lift specifications for rotary-type pumps are the same as for centrifugal pumps.

A centrifugal and jet, or ejector, combination pump can produce low rates of flow and suction lifts to 120 ft (37 m). In deeper wells, jets sometimes are used in combination with positive-displacement pumps.

For capacities exceeding a few gallons per minute (10 or 11 L/min) and settings deeper than 30 ft (9 m), a multiple-stage deep-well turbine pump that is driven directly by a submersible motor or through shafting by a surface-mounted motor or engine is usually selected. The choice between submersible and surface-driven turbines should be based on the following:
• Analysis of initial costs and operating costs
• Acceptability of aboveground structures and noise
• Likelihood of vandalism
• Well conditions
• Available power
• Other factors specific to a particular installation

Except for positive-displacement pumps, the discharge head increases as the rate of flow or capacity decreases, and the discharge head decreases as the rate of flow or capacity increases. If constant discharge under a varying head is to be maintained by a centrifugal pump, a variable-speed drive must be used. No problem is encountered when a positive-displacement pump is used because the capacity depends on the speed of the pump. The pressure that can be developed by a plunger-type pump is limited only by the size of the power unit and strength of materials.

ELECTRIC MOTOR SELECTION

Electric motors are usually selected according to National Electrical Manufacturers Association* standards, which include requirements for enclosures and cooling methods. An electrical specialist should be consulted for advice and assistance in selecting electric motors. AWWA Manual M2, Instrumentation and Control, also provides information on electric motors.

PUMP INSTALLATION

Proper pump installation increases pump efficiency, minimizes maintenance, and prolongs the life of piping. This section covers installation of pumps and associated piping.

Aboveground Installation

A good foundation, preferably concrete, should be constructed for pump placement. Foundation bolts should be placed according to the dimensions that are usually furnished by pump manufacturers. The pump must be easily accessible for regular inspection. Room should be provided for use of a crane, hoist, or tackle. Pits in which pumps are placed should be safeguarded against flooding.

Alignment. Pumps should be properly aligned by leveling the base with shims. Most pump bases, no matter how rugged, will spring and twist to some degree during shipment. Consequently, alignment is crucial when the unit is being installed.

Piping should line up naturally and be supported independently of the pump to eliminate strain on the pump casing; it should not be forced into place with flange bolts. The piping should be isolated from the pump head with a dresser coupling near the head. After the piping has been installed, alignment should be rechecked. On unusually long discharge lines, a packed slip joint should be installed to compensate for elongation of pipe that might result from pressure or temperature changes.

Piping. To protect the pump, a gate valve and check valve should be installed in the discharge pipe close to the pump. The check valve should be placed between the pump and a gate valve. If pipe connections are used on the discharge end of the pump to increase the size of discharge piping, the connections should be placed between a

*National Electrical Manufacturers Association, 2101 L St. N.W., Washington, DC 20037.
check valve and the pump. The selection of the discharge piping should be made with
due reference to expected friction losses.

After the piping has been completed, alignment should be checked again using a
straight edge and thickness gauge. The manufacturer’s installation checklist and
adjustment directions should be closely followed and double checked before applying
power to the pump unit. When pumping units have been aligned before piping is com-
pleted, piping strains that develop are probably the cause of any misalignments.
Changes should be made accordingly. If stuffing boxes are adjusted properly and the
pump and drives are aligned properly, the unit can usually be operated by hand with
ease.

Deep-Well Installation

A deep-well pump driven by either a submersible motor or an aboveground driver
must be installed according to the manufacturer’s instructions. The pump must be
sized and set so that it will never run for even a few minutes at no delivery, which
could occur if excessive drawdown is present or if the pumping level is lowered to the
intake area. Running with little or no delivery is likely to damage the pump bearings
(if they run long enough to heat up and boil) and cause overheating failure of a sub-
mersible motor. If the well drawdown or the delivery system could cause the pump to
run at little or no delivery, protection should be provided to ensure flow. Such protec-
tion could be in the form of a flow switch or well-level switch that would shut off the
pump or sound an alarm if flow or water level dropped below a safe minimum. The
minimum water level above the pump intake should always be kept greater than the
required suction head (NPSH) specified by the manufacturer.

The materials used in the pump and delivery system must be resistant to signifi-

cant corrosion caused by normal water conditions in the well or any periodic chemical

This problem will not occur if the pump is designed to

Refilling of the delivery pipe at each start, which wastes power.

Creation of a vacuum and water hammer. Aboveground check valves and
shutoff valves near the pump, which are often required, can create a vacuum
in a section of the delivery pipe after the pump turns off. This occurs because
atmospheric pressure can only support water in the pipe to less than 34 ft
(10 m) above the level in the well. When this evacuated section refills on
starting, the moving water striking the stationary water at the closed valve
creates a severe hydraulic shock (water hammer), which can cause pipe, valve, pump, or motor failure. An air and vacuum release valve should be installed between the pump head and the check valve.

Additional check valves may be required, depending on setting depth, valve rating, and aboveground equipment. A check valve in the delivery pipe of a submersible pump will hold the pipe full of water if the pump is removed from the well. Special check valves are often used in which a small replaceable plug can be broken off to create a drain by dropping a weight down the well before pulling the pump.

The manufacturer’s installation documentation for surface-driven, deep-well pumps includes information about the following:

- Column pipe assembly
- Bearings and shafting
- Lubrication
- Alignment
- Mounting and aligning of the aboveground drive
- Setting of the impeller position
- Use of proper controls

Submersible pump information includes

- settings that prevent motor burial in sand or silt
- water temperature and flow past the motor to provide proper cooling
- use of cable and splices that meet the amperage and voltage requirements
- pipe tightening to prevent unscrewing by motor-starting torque
- clamping of cable to delivery pipe
- proper controls and protections
- necessary checks before, during, and after installation
Chapter 7

Operations Problems, Well Plugging, and Methods of Correction

Wells usually provide relatively consistent, maintenance-free water supplies over many years. Most operators are familiar with mechanical failures of pumps and motors caused by wear, age, or lightning, but in many cases problems can be a symptom of fouling or plugging. These problems can create excessive drawdowns, loss of specific capacity, or inefficiencies.

All wells can plug or foul as a result of hydrogeologic, geologic, engineering, and construction factors. The source of problems are usually physical, mechanical, or environmental. This chapter provides a basic discussion of well performance and fouling problems, their causes, options for correction, and the economics of rehabilitating old wells. Three case studies are included at the end of the chapter that discuss fouling problems in detail, and corrective actions that were, or were not, taken.

EVALUATING WELL PERFORMANCE

Specific capacity may be the most informative single factor in well performance. The specific capacity is the pumping rate per foot of drawdown. When plugging problems occur, the drawdown increases and therefore, the specific capacity decreases despite the fact that the total yield of the well may not decrease significantly.

A related factor is the entrance velocity at which water passes through the well screen or the edge of the formation (depending on the type of well). As the entrance velocity increases, sand, silt, and colloidal matter can enter the flow stream. Generally, entrance velocities are designed to be less than 0.1 foot per second on the assumption that flow is laminar to minimize
• turbulence around the well screen
• precipitation of iron, manganese, and calcium
• particulates at the well screen

In addition, a low entrance velocity prevents pressure changes in the well and releases dissolved gases. Conversely, higher entrance velocities may reduce some fouling problems.

A third set of indicators of well performance change are well and aquifer (nonlinear and linear) loss components of drawdown, which are derived during analysis of step-drawdown pumping tests (Krusemann and de Ridder 1994). Changes in these loss components can be used to determine whether well clogging is deep-seated (formation) or surficial (gravel pack and screen).

POOR WELL PERFORMANCE

Several performance problems are caused by fouling or sand and silt production in wells. These problems and their likely causes are outlined below (Borch et al. 1993):

1. Water level decline in the well
 a. reduced hydraulic efficiency in the well, most commonly plugging or incrustation of the borehole, screen, or gravel pack
 b. regional water level declines
 c. well interference or plugging of a gravel pack by sand, silt, or clay

2. Lower specific capacity
 a. drop in pumping water level
 b. reduction in pumping yield due to microbiological fouling, chemical precipitation, formation plugging, pump corrosion, and biofouling

3. Lower yield
 a. dewatering or caving in of a major fracture or other water-bearing zone
 b. insufficient development
 c. lack of connection to water-bearing fractures
 d. pump wear
 e. impeller detachment from shaft
 f. microbiological fouling, plugging, or corrosion and perforation of column pipe

4. Sand/silt pumping
 a. presence of sand or silt in fractures intercepted by well-completed openhole
 b. leakage around casing bottom
 c. inadequate screen and filter-pack selection or installation
 d. screen corrosion
 i. collapse of filter pack due to excessive vertical velocity and washout
 ii. insufficient development

5. Silt/clay infiltration
 a. inadequate seal around the well casing or casing bottom
 b. infiltration through filter pack
 i. “mud seams” in rock
 ii. insufficient development
Many of these performance problems can be traced to inadequate design and/or construction of the well. Several operational conditions that are warnings of design problems are overpumping (which results in lowering of the water table), clogging or collapse of a screen or perforation of a screen section, corrosion, incrustation and wear aggravated by excessive intake velocities. Other design and construction errors include:

- poor selection of materials that lead to significant corrosion or collapse
- incorrect specification of pumps
- poor construction: casing cracks or leaks, leaking or missing grout, misplacement of screens and gravel pack, misalignment
- lack of well development: poor well yield, turbidity and sand pumping, biofouling, incrustation, and excessive drawdown

The well production rate is usually determined by the hydrogeologist, based on aquifer tests performed at the time of drilling (or shortly thereafter—see chapter 4). The hydrogeologist’s recommendation should be respected. Overpumping an aquifer can damage the well by reducing the storage and production capacity of a groundwater system. Wells that are too close together increase drawdown and pressure loss in the formation. In compactible granular formations, the water-bearing formation will consolidate. As a result, compaction and consolidation result in a lower water table, less water storage space, reduced yield from individual wells, and can collapse the well casing.

COMMON PUMP OPERATING PROBLEMS

Breaking Suction

No pump should operate at a rate at which it breaks suction. Besides damage to the pump, the water level fluctuates violently when a pump breaks suction. The fluctuation creates a surge in the well and in the water-bearing formation outside the well. The force may collapse the well if it was not properly stabilized. A surge can also cause sand pumping. With the loss of suction, air is entrained with the water and causes it to appear milky. Air bubbles may also damage the distribution system piping by causing air pockets. A surge can dislodge corrosion products, slime layers, or other incrusted materials from the inside of the column or transmission pipes.

If a pump does break suction and pumping stops, the discharge must be reduced by partially closing the discharge gate valve until the pumping level in the well remains above the pump bowls. Closing the valve increases the head loss in the system, causing the pump to work against a greater total dynamic head and decreasing flow. This procedure also wastes power. To regain efficiency, the pump is usually set deeper (if conditions permit) or one bowl and impeller is removed from the pump assembly to change the operating characteristics of the pump.

Causes

A lower pumping level in a well that has previously operated satisfactorily may result from the following:

- The water table (nonpumping level) in the vicinity of the well may have dropped so that the pumping level was correspondingly lowered.
• The intake portion of the well may have become clogged with incrusting material, so that greater drawdown had to be created to cause water to flow from the formation into the well at a given rate.

Lowered water table. The aquifer level in the vicinity of a well may recede seasonally or during long dry periods when recharge to the aquifer is at its minimum. An aquifer level is reduced if the stored groundwater is being gradually depleted by pumping. The successive installation of additional wells in an area with overlapping cones of depression can also cause the water table to recede. A receding water table will cause significant mutual interference between wells, and the overlapping cones of depression would reduce the water levels of the wells. Consequently, water levels in the aquifer will be lowered to a point that is lower than that found in a single operating well.

Figure 7-1 illustrates the operating problem that results from a drop in the water table caused by any of these occurrences. Curve 1 represents the relationship between well yield and pumping level. Curves 2 and 3 represent lower pumping levels caused by recessions of the water table. The drawdown in each case is the difference between the depth to water at zero discharge and any other point on one of these curves. The limiting yield occurs where increase in yield ceases to be approximately proportional to increase in drawdown.

Figure 7-1 Operating problems resulting from a drop in the water table
With a pump operating at point A on curve 1 and a drop in water level that changes the well performance to curve 2, the same pump may operate at about point C. This undesirable situation can be improved only by cutting back the pumping rate to less than 800 gpm (3,000 L/min).

Clogged intake. When a pump breaks suction, the water level fluctuates violently, producing a surge in the well and in the water-bearing formation outside the well. In very soft sandstone or a screened well not completely stabilized during construction, the surging action may dislodge fine materials and cause sand pumping.

If suction is lost, air becomes entrained with the water, causing it to appear milky. The discharge pulses, plus expansion of the entrained air bubbles, can reach the distribution system. Corrosion products or other incrustations can be dislodged from the inside of pipes and color the water. A loss of suction will interrupt the cooling effect of the water flow, resulting in the pump bearings heating up and eventually seizing.

Solutions

Water levels in all wells should be measured and recorded periodically. A continuing record of both nonpumping and pumping levels should be maintained. If the pumping level recedes in any well, the cause should be determined. The pumping equipment should be adjusted if danger of breaking suction becomes apparent.

PHYSICAL CAUSES OF WELL DETERIORATION

Water supply operators should evaluate any well failure or long-term decline in performance to determine if physical or mechanical problems are causing the decline. A review includes

- long-term drawdown trends
- changes in viscosity or water temperature from the baseline data
- pumping that exceeds the recharge rate
- interference of other wellfields that are lowering the water levels
- pumping that exceeds the design capacity
- non-uniform flow through the well screen

The only way to determine if any of these factors is occurring is to monitor the aquifer levels and to perform specific capacity analyses on a regular basis. The specific capacity should be determined at least annually on each well, and the analysis should occur only after the well is allowed to fully recover. Then, the well should be run for an hour to determine specific capacity. The result is then compared to the original data and plotted to show trends.

Evidence of a physical problem when the specific capacity declines include

- increased air in the discharge
- increased sand, colloids, or other turbidity in the water pumped
- excessive wear on the pump
- increased color or settlement around the well, which may indicate large quantities of sand removal

Particulates, incrustation, calcium carbonate, or corrosion are the main causes of these visible changes.
Particulate Plugging

Sand, silt, or colloidal matter drawn into a well or well screen will plug the screens, providing less area to draw the water. Plugged screens increase the entrance velocity of the raw water, which can increase particle movement as well as drawdown. Particulates in the water tend to wear out well screens, increase pump wear, and decrease water quality.

In most cases, particulate plugging is caused by poor well design, including insufficient development of the well or inadequate formation sampling that leads to poor screen location. In some cases, the logging may not have been sensitive to thin layers of sand, silt, or colloidal matter that now may be exposed. In wells with gravel packs, incomplete development or over-pumping may be indicated by plugging of the gravel pack and the screens. Consistent production of sand or silt in a well can collapse the formation above the screen, or worse, at the surface. Particulates also form a nucleus for chemical incrustation on a screen or column.

Plugging by Iron and Manganese

At a pH less than 5.0, iron and manganese remain dissolved as Fe$^{+2}$ and Mn$^{+2}$ in the water supply. Depending on the redox potential, they may remain in solution at higher pH, which is why most membrane systems add acid to keep precipitation from occurring. In the dissolved form, these metals can collect around the well screen in an insoluble mass. The presence of dissolved oxygen (2 to 3 mg/L), or a higher pH, is a greater concern because ferric or manganic compounds can precipitate on the well screens. This precipitation will form nodules that collect additional ferric or manganic precipitates. Oxygenated water (used to lubricate pumps) or cavitation (caused by turbulent flow) aggravates iron precipitation and encourages the growth of iron-related bacteria around the well screen.

Acidic groundwater (pH less than 7.0) may dissolve calcium carbonate from the formation materials, causing them to move into the well screen or increase turbidity. The reduced pressure in the well and gravel pack caused by pumping, causes precipitation and scaling of calcium carbonate, and may encourage iron and manganese precipitation as well.

Corrosion

Three general types of corrosion involved in water wells are hydraulic, chemical, and galvanic. Hydraulic corrosion is caused by turbulent flow, hard particulates, or wearing flow velocities, which abrade well components. Hydraulic corrosion is generally due to particulate matter from incomplete well development, or fine material within the formation that is not screened out. Corrosion enlarges screen slots or open holes in the casing, which allows even larger particles into the casing, and the deterioration accelerates. In time, the casing material reduces, and potentially collapses. Cavitation caused by turbulent flow will aggravate corrosion by flaking off pieces of metal. Pumping at rates higher than design flow is the primary cause of hydraulic corrosion.

Chemical corrosion is the dissolution of metal, typically zinc or iron, into solution through carbonation or oxidation reduction reactions. Chemical corrosion is more of a problem in older wells because of materials used in the past. Chloride ions that exist in raw water can form weak acids that attack metals. Sulfide ions also create acids in certain environments that may attack metal surfaces. Oxidation and reduction reactions occur in groundwater environments and can accelerate corrosion in a well. The presence of highly dissolved oxygen may accelerate desiccation of brass or other pipe.
Galvanic corrosion is caused by the generation of electric currents in dissimilar metals. Galvanic corrosion is often a problem with stainless steel pumps that are connected to steel column pipes with bronze centralizers in a steel casing. Newer technologies and the use of fiberglass, bronze, and plastics have reduced galvanic corrosion. The higher the conductance that exists between two metals, however, the greater the potential for galvanic action. This corrosion is typically found where casing screen is joined, where the submersible pumps are joined to the column pipes, or where bronze spiders exist. Poor pump alignment, stressed threadings, or poor welds may encourage this type of corrosion.

Of increasing concern is the feedback of electrical currents from high-voltage power lines that create induced voltage on an underground pipe distribution system via the ground for water wells. This activity may be intermittent in effect. Because of soil resistance conditions, the effect may only be apparent during drought conditions and progressive damage may develop over several years. It may be necessary to electrically isolate the pump from the distribution system and install a sacrificial anode or automatic electrical compensating device on the system.

Reducing Physical Causes

Proper design will reduce potential excessive entrance velocities or improper screen placement that can allow fine-grained formations to migrate into the wells. Proper materials such as plastics or fiberglass instead of steel or stainless steel should be used in many situations. Dissimilar metals should not be used in close proximity. Improper construction, poor grouting, excessive screen or casing damage, or the removal of protective sealants can lead to physical deterioration of the well. The improper application of certain chemical reagents, especially chlorine, and sequestering reagents, or those used during redevelopment, may exacerbate deterioration. Finally, overly aggressive pumping for redevelopment, over-pumping of the system, or the improper use of surging, may cause structural damage to the well in the long term.

SAND PUMPING

Amounts of sand as little as 0.3 ft³/million gallons of water can cause many operational problems. In addition to causing excessive wear in pumps and valves, control orifices can become plugged, water meters stopped, and sprinkler heads clogged.

In a few instances, sand pumping cannot be eliminated, even if a well is properly designed and constructed. Reduced pumping rate by increasing head through valving may give some relief. Where water is discharged from the well into a large tank or reservoir, the sand may settle out and should not cause excessive problems, except for pump and valve wear.

If sand pumping cannot be entirely eliminated, a centrifugal sand separator, as shown in Figure 7-2, may be used. Water enters the body of the device at a tangent immediately below the baffle. The small radius and high velocity create a large centrifugal acceleration, which throws the sand to the side of the device. The sand falls down the side and is collected in the centrifuge tube, while the sand-free water flows out through the hole in the center of the baffle.
The flow is maintained at a constant rate, independent of the inlet pressure, with a flow control valve rated at 0.5 gpm (2 L/min). This patented flow control valve uses a rubber orifice that contracts with increasing inlet pressure. The valve is designed for a pressure variation from 15 to 150 psi (100 to 1,000 kPa).

At suitable intervals, the volume of sand collected is recorded, together with the number of hours of operation. From these data, the average sand concentration may be computed, because the flow through the tester is known. Any significant increase in sand production is noted immediately, and corrective action can be taken before appreciable quantities of sand have entered the distribution system. One tester for each well suspected of producing excessive sand can be provided if economically feasible.

Sand flow into a well occurs only during turbulent flow unrestrained by the gravel pack or screen. Shifting the position of the pump suction, pipe or intake, or installing a suction flow control device (e.g., Aquastream devices) between the screen and pump intake may be more cost-effective than a sand separator device.
Microbiological fouling is generally interrelated with physical and chemical processes. Microorganisms can incrust or corrode the system, enhancing physical and chemical deterioration. All well deterioration problems have some microbiological fouling. The typical symptoms of microbiological fouling problems are

- a decrease in the water quality
- increased drawdowns
- reduced specific capacity
- a change in the amount of iron or manganese in the water supply
- an apparent increase in microbiological densities such as an observance of slimes or staining from the raw water

Microbiological fouling encourages changes in the electrical potential and pattern of the well surface by creating anodes on metallic surfaces to transfer ions. Biofilms are formed that eventually clog screens. The bacteria absorb nutrients such as iron, nitrogen, and oxygen within the biofilm walls, leading to the formation of tubercles and films that reduce capacity of the pumps and casings. Wells with water-lubricated pumps are subject to severe microbial action.

Aquifers are ideal environments for certain bacteria adapted for these conditions. There is tremendous surface area for colonization, the temperatures are relatively constant and moderate, the flow of water provides a consistent nutrient supply, and, except for the immediate pumping zone, the water is not disturbed. The cycling of a pump on and off with the exchange of atmospheric air in the casing provides the oxygen supply to maintain low aerobic conditions sufficient to maintain growth of certain bacteria in the well. All spaces within the formation are potential areas for colonization. Vugular formations (rock with air pockets) or those with significant fracture surfaces are ideal for creating large biofilms within the aquifer, but never indicate severe plugging because of the size of the organisms in comparison to the opening aperture size.

A biofilm is an entire active ecosystem, providing an environment for survival to a variety of microorganisms by storing and transporting nutrients. The biofilm protects the bacteria cells from external reagents such as chlorine, but traps iron, sulfur, manganese, and other nutrients. Precipitates of the iron, sulfur, and manganese occur within the biofilm.

The most commonly described bacteria are “iron bacteria” which tend to precipitate iron and create a characteristically colored slime—generally rust colored. They precipitate iron, which can create iron oxide tubercles, and remove iron from the casing surface in other areas. Variations include manganese and sulfur-depositing bacteria. Sulfur-reducing bacteria (SRB) reduce sulfates or elemental sulfur to sulfides by respiration. The mineralization of iron and sulfur (forming Fe II sulfides) caused by SRB with low redox conditions will cause a slime matrix that is generally black in color. They interact-symbiotically with the aerobic iron bacteria.

Slime-forming bacteria come in many varieties. They can live symbiotically with other bacteria by providing a protective slime coating. One of the more common families of the slime-formers is the *Pseudomonas* species, some of which are opportunistic pathogens. Sulfur oxygenating bacteria form light-colored filamentous slime biofilms where sulfides are present in groundwater. One family is *Thiothrix*. All of these biofilms, as they grow, may form filaments that serve to reinforce the biofilm and protect the underlying bacteria.
When a biofouling problem has begun, little can be done to remove it permanently. Control of the colonies is the best strategy and the sooner biofouling is detected, the sooner treatment can begin. Methodologies to detect and manage biofouling through maintenance have improved significantly in recent years and are described in a variety of available literature.

Several steps should be followed to look for bacteria. A down-hole camera should be used to look for the visible signs of biofilm deposits. Any equipment that is pulled out of the wells should be thoroughly cleaned so other wells are not contaminated.

Biofouling can be detected early via indicators of increased bioaccumulation. Since the early 1990s, relatively effective and simple-to-use field tests of biological activity have been developed. Among those available are relatively simple to use cultural enrichment methods, including the widely used BART developed by Droycon Bioconcepts Inc. (Regina, Saskatchewan) and a similar method developed independently by practitioners in Argentina (MAG Laboratorio Microbiologia Industrial, La Plata). Their theory and use are summarized in Cullimore (1993 and 2000) and Gariboglio and Smith (1993), respectively. Evaluations of BART methods, and comparison to other culturing methods, by independent users are available (Smith 1992; SWWI 2000). These tests are species specific and require the collection of a water sample and exposure to the media used in the test. If present in the sample, the organisms will grow.

Culturing methods such as BART or MAG tests are limited to use in detecting bacteria that can be cultured (a minority of those present) and do not permit a direct observation of biofilm properties. Microscopy (which has its own limitations) provides the capacity for direct observation of biofilms. This is best conducted using relatively intact biofilm examples. For this reason, biofilm collection methods have been developed to aid in providing high-quality biofilm samples. Borch et al. (1993) and Smith (1992) describe many of these.

Collectively, such tests (plus some others) permit a qualitative evaluation of the microbial ecology of wells and water systems that is useful in planning rehabilitation and maintenance. Experience in their use for this purpose is evolving rapidly.

If BART shows bacteria are present, a microbiological lab capable of identifying bacterial and fungal species should be consulted. However, since most aquifer formations have microbes, and there are literally thousands of them, the BART step could be skipped and water samples delivered directly to the microbiological lab for analysis. Repeat samples are beneficial as they indicate the changes that may be occurring in the formation. A common, but unrecognized benefit of the test for coliform bacteria is that it can reveal additional bacterial strains—they are the pink dots that grow on the filter test media that are not coliforms.

TREATMENT OF FOULING PROBLEMS

Many older wells were installed with methods no longer in use today and do not meet today’s standards. In these cases, some work can be done, but the problems probably cannot be fully corrected. For many older wells, acidification, typically using hydrochloric acid, can improve performance. Hydrochloric acid solution will remove or loosen incrustation in the screens or the column pipe, although it will not remove much biofouling.

Physical agitation or surging (redevelopment) is necessary to remove dislodged deposits during well treatments. At times redevelopment may be used alone to remove incrustation or reduce fine material entering the well screen or gravel pack. Methods used are essentially identical to those used for original well development and are
described in detail in Driscoll (1986), Roscoe Moss (1990), Borch et al. (1993), and other references on well construction and rehabilitation.

In cable tool surging, tools are used that push water down into the well and pull it out, just as old hand pump well systems worked. Initially, the surge device is operated at less than three strokes per minute at 6 in. to 10 in. per stroke. Over time, the frequency and the stroke should be increased (up to about 5 ft/min), which increases the surging. If the casing or the formation is weak, or the screens damaged, the well structure can collapse during surging.

Chemicals are commonly added to the well to enhance the effectiveness of redevelopement. Chemical choices for rehabilitation and maintenance cleaning depend on the clogging problem and the water quality and may differ in type and concentration, depending on whether rehabilitation or maintenance is the objective. For example, chlorine is used as a biocide for microbiological fouling, although in most cases it does not kill all the bacteria; it only serves to control the biofilm. A 12 percent sodium hypochlorite solution or HTH (calcium hypochlorite) provides the chemical strength needed to control the bacteria. In some cases hydrogen peroxide may be used to address biofouling problems, but certain bacteria (Pseudomonas species) may be able to use the oxygen to their benefit, increasing biological activity.

Another option is acidification, dropping the pH to less than 2. Hydrochloric, sulfamic, acetic, glycolic, or nitric acid are used, but these chemicals must be used carefully. Deterioration of the well materials must be weighed against the removal of the biofilm or the incrustation. If biofouling removal is the objective, a solution of 10 to 15 percent acetic acid or 5 to 10 percent glycolic acid, amended with sulfamic acid to achieve a pH of 2, is commonly used. This solution attacks biofilm integrity without the aggressiveness of hydrochloric, nitric, or phosphoric acid solutions. The addition of phosphates has been used, as it makes water “more slippery” and increases total well capability. However, the phosphates may provide a scarce nutrient for biofilm, and alternative chemicals that do not contain phosphates are now widely available. Guidance in chemical choice is supplied in Borch et al. (1993) and other publications, as well as on Web sites such as Groundwater Science. In all cases with chemical use, a plan for handling hazardous material and disposing must be made. None of these chemicals should be discharged in an uncontrolled way to the ground; they must be hauled to an approved disposal site, such as a sanitary sewer.

Heating chemicals greatly increases their activity, which is valuable in cool groundwater, and increases penetration of chemicals into the formation. Less concentrated solutions can be used. Additionally, heat aids in shocking and disrupting biofilms and aiding in their removal. Heat-amended chemical treatments with redevelopement are among the best documented of more recent treatments. Two related processes, Blended Chemical Heat Treatment (BCHT, ARCC Inc., Daytona Beach, Fla.) and the Ultra Acid Base process developed in Canada (SWWI 2000), represent the most systematic application of mixed methods involving heat.

Another method, carbon dioxide injection, uses gaseous carbon dioxide and liquid carbon dioxide under 100 psi of pressure. This technique causes the carbon dioxide to enter the formation, dropping the pH through a conversion of the CO2 to carbonic acid. If liquid carbon dioxide is used, the water freezes in the formation, causing cracking and loosening incrustation. The formation may also crack and loosen, which can free the fractured zones or crack the bedrock formations and potentially increase yield. After the carbon dioxide is injected, the well is surged and redeveloped. A chemical treatment and development step is frequently used in addition to the CO2 treatment. This method is not effective on biofilms. As with hydrogen peroxide, carbon dioxide treatment may promote biofilm development where such biofilms exist.
Sonar jetting (Water Well Redevelopers, Calif.) involves deploying a sequence of small blasting caps suspended in the screen or exposed borehole and set off, sending shock waves and gas through the screen and into the formation. The goal is to blast incrustations off of the well screen, formation, and casing. After sonar jetting, surging and full redevelopment of the well must occur to remove all of the excess debris. Acidification improves the process to some extent. Potential problems with this process may be the inability to get permits to do the blasting and the potential damage that may occur to the casing or the screens. An example case history of combined Sonar Jet and chemical treatment use is found in Groundwater Science (2000).

Other methods that show some promise in certain specific cases are suction flow control devices and inner sleeve installations within the casing using entrained air to reduce fouling.

Environmental Issues

Any of these methods creates potential environmental problems that must be addressed by appropriate regulatory agencies. All deplugging and cleaning methods require the discharge of water, which can contain chemicals, silt, sand, and other debris. The quality of this water may require treatment. A common method of disposal is to discharge the well volume into a tanker truck, stabilize the chemicals and haul the debris to a wastewater treatment plant. The wastewater plant personnel will not appreciate large volumes of well debris in the discharge, so some screening would be beneficial. The liquid may be hauled to a landfill in some jurisdictions. Appropriate regulatory agencies should be consulted and necessary permits obtained.

Ideally, minimizing the impact of treatment methods should be a part of the planning process. Actual chemical risk can be minimized by choice of chemical, using the minimum possible aggressive chemical concentration (relying more on development action and increasing effectiveness using heat), and handling and discharge risks are manageable with proper planning.

In each case, the waste stream characteristics must be identified, including:

- pH of the water
- chloride level
- toxic substances
- silt
- the quantity of the water to be discharged
- the time element for which the discharge will occur (i.e., a relatively consistent flow over a period of time or surges)
- the new water quality of the wells
- the uptake of metals, SOCs or VOCs that might violate air or water standards

Regulatory agencies that may be involved in any discharge to surface waters or wetlands may include national, state and provincial or regional agencies, and local agencies, especially for discharges to sanitary sewer systems.
Cleaning a plugged well can help maximize the return on a capital investment in a well. Operation costs can be reduced by eliminating pumping inefficiencies and restoring the well efficiency to its earlier level. To properly evaluate the economics of cleaning plugged wells, historical records are needed for flow, test data, specific capacity calculations, development records, design details, pump performance curves, and some periodic information on inspections. This data will create a baseline to compare all future well performance calculations. The information may also be of use in selecting proper methods for unplugging the wells. Routine monitoring should include flows, drawdowns, hours pumped, power usage, and calculated specific capacities, all of which should be plotted for each of the wells.

To evaluate the costs, the initial costs of service should be determined using the current pump and well performance. Changes in specific capacity will affect both the power and the hours pumped. The assessment over time indicates what the changes in the efficiency of the pump have been. Record keeping will tell operators and engineers when the well has deteriorated to a point that it needs to be rehabilitated. The industry standard is a 15 percent loss in specific capacity.

The risks involved with well age must be compared with the cost to rehabilitate, the well's life expectancy, and the potential for gains in specific capacity to determine whether to rehabilitate the well. A well that has been rehabilitated a number of times and shows a general decline in performance and an inability to regain the initial specific capacity may be a candidate for abandonment (see Figure 7-3), although a change in treatment method may reverse the trend. Any evaluation should include the cost to rehabilitate or to replace the well if the cleaning process is not successful, the value of additional water obtained, and comparison of the cost per unit of water pumped between treatment and other alternatives such as well replacement. Replacement wells have the added issue of dealing with relocation of pumping, which may entail added property acquisition, and in some areas, water rights. The following summarizes a fictitious example of how the replacement versus rehabilitation options must be weighed:

<table>
<thead>
<tr>
<th>Well Rehabilitation</th>
<th>Replacement Wells</th>
</tr>
</thead>
<tbody>
<tr>
<td>$20,000</td>
<td>—Exploration for a well</td>
</tr>
<tr>
<td>Payback in Water</td>
<td>—Permit application</td>
</tr>
<tr>
<td>Will break even—1.8 years</td>
<td>—Water rights acquisition</td>
</tr>
<tr>
<td></td>
<td>—Design engineering</td>
</tr>
<tr>
<td></td>
<td>—Land acquisition</td>
</tr>
<tr>
<td></td>
<td>—Pipeline design</td>
</tr>
<tr>
<td></td>
<td>—Treatment changes</td>
</tr>
<tr>
<td></td>
<td>Cost—$300,000</td>
</tr>
</tbody>
</table>

When the current costs are developed and compared to the initial costs, and the risks are determined, a direct comparison of the current versus initial costs can be made. This comparison will indicate the change in operating costs due to inefficiencies of the well. For a specific capacity decline of more than 15 percent, some rehabilitation should take place, as the increase in operational costs will be high. In most cases, there is a relatively short payback period between the costs of rehabilitating the well and the cost for installation of a new well. In cases when the wells are relatively old, the replacement cost should be used to determine payback period. For old wells where performance continues to decline, new technologies can provide substantial benefits. The following section is a series of calculations that have been made as an example.
Calculation

This analysis was originally presented at the American Water Works Annual Conference in Toronto, Canada, on June 22, 1996, by Kenneth C. Gaynor with Hydro Group, Inc.

Example Well for Cost–Benefit Analysis

Original well performance

- Static water level: 15 ft
- Well depth: 85 ft
- Available drawdown: 40 ft
- Flow rate: 700 gpm
- Pumping level: 48 ft
- Drawdown: 33 ft
- Specific Capacity: 21 gpm/ft

Annual Operating Conditions

The volume of water pumped is 157 million gallons. Operational time is 3,738 hours per year. Average kilowatt cost is 9 cents per kilowatt.

Calculation

Original Annual Operating Cost of Example Well

\[
\frac{\text{$/Hr}}{3,960 \times \text{pump eff.} \times \text{motor eff.}} = \frac{700 \times 168 \times 0.746 \times 0.09}{3,960 \times 0.82 \times 0.90} = \frac{7,895.6}{2,922.5} = \frac{2.70}{\text{hr}}
\]
To get the cost per year, multiply by the hours:

\[= 2.70 \text{$/hr} \times 3,738 \text{ hr/yr}\]

\[= $10,093/\text{yr}\]

Example: Well Performance History

Well Performance History is shown in Figure 7-4.

Current Situation

- Specific capacity decreased to 7.5 gpm/ft
- Maximum drawdown well: 40 ft
- Maximum yield from wells: 300 gpm
- Curve efficiency of 300 gpm: 60%

Operating Costs of Inefficient Well

\[\text{$/Hr} = \frac{\text{gpm} \times \text{tdh} \times 0.746 \times \$/\text{Kwh}}{3,960 \times \text{pump eff.} \times \text{motor eff.}} \]

\[= \frac{300 \times 198 \times 0.746 \times 0.09}{3,960 \times 0.60 \times 0.90} = \frac{3,988}{2,138} \]

\[= $1.86/\text{hr}\]

Current Costs

Given usage of 157 million gallons per year and to have 300 gpm, the pump must operate 8,722 hours, which is $16,223 per year.

Potential Savings

- Current well cost: $16,223
- Original cost: $10,093
- Savings per year: $6,130

Comparison to Cost of Redevelopment—Conclusions

The cost of redevelopment is $10,000; the payback is 1.63 years. The economic decision is to rehabilitate the well and repeat the redevelopment.

Figure 7-4 Example of well performance history
In most well plugging situations no single factor is involved with the well plugging or corrosion problem. As a result, no clear-cut methodology can identify and clear well-field problems. Two of the following examples are from Florida; one system is a fresh, surficial aquifer zone, the other a deeper, brackish aquifer. Both have severe microbiological problems.

Collier County Wellfield

The Collier County Water–Sewer District is located in southwest Florida surrounding the city of Naples. The service area is approximately 200 sq mi. The system has been developed since 1982 when the first wellfield was established.

The primary drinking water supply is from the surficial Tamiami Aquifer. Below the Tamiami Aquifer is the Lower Tamiami Aquifer, which yields higher quality water for treatment. While in some areas of Collier County there is little differentiation between these aquifers, at the district’s wellfield, between 30 and 50 ft of fairly tight clay and dolomite separate the two, limiting vertical recharge. This formation is highly transmissive, and is primarily made up of highly fractured and solutioned limestone. Recharge is primarily via rainfall, although a significant portion of the recharge may come laterally from the Big Cypress and Corkscrew swamp areas. The overlying area consists of low-density residential development (a minimum of 2.5 acres per household) and some minor incidental commercial development. Recharge capability is high. Below this formation is a series of progressively more saline aquifers starting with the Hawthorn Group at 180 ft below sea level.

In investigating potential wellwater supplies for the district, the Lower Tamiami Aquifer was selected to provide the water, which is a highly transmissive production zone of vugular limestone. While recharges are primarily from rainfall, some organics are brought in from the adjacent swampy areas. The production zone is between 60 ft and 140 ft below sea level and each well is designed for 1 to 1.5 million gallons per day. Since the initial wellfield construction, two expansions have been completed. Except for the first five wells, all of the wells are constructed with polyvinyl chloride casings.

In 1990, the district designed a 12-mgd membrane softening (nanofiltration) facility located five miles north of its lime softening plant. The two plants manifold together and use the same wellfield for water supply.

Just before the design of the membrane softening plant, the district found several of its new 304 stainless steel column pipes had been sheared off only 18 months after installation. When fished out, the column pipes showed a black slime ringing the column pipe at the point of shearing. At the same time, a significant amount of slime was noted coming into the lime softening plant’s degasifier towers. Specific capacity of the wells was analyzed and found to be significantly reduced from their initial rates. The steel column pipes and other steel within the pumps and the facility showed a significant amount of corrosion. The typical corrosion was pitting, with black longitudinal slime running with the vertical direction of the column pipe (see Figure 7-5). Analysis was taken of the slime and sent to Harco Technologies in Atlanta, Ga., and Layne-Atlantic in Kansas City. Reports from these two companies indicated that there was a significant and widespread pitting of the column wall thicknesses, including some portions where 75 percent of the column pipe’s thickness had been lost. Bacteria consisting of Gallionella and other iron bacteria propagated on the stainless steel materials, and anaerobic sulfur-reducing bacteria had developed a symbiotic relationship with the aerobic iron bacteria. Various slime-forming bacteria of the Pseudomonas family had interjected themselves into the symbiotic relationship by providing an overlying
slime layer to protect the iron and sulfur-reducing bacteria. Because the buildup creates an anode on a pipe, it exacerbates the deterioration of the ferrous material. Unfortunately, these species are persistent, especially the *Pseudomonads*, which can attach colonies to stainless steel in a matter of hours. Once attached, the colonies are extraordinarily difficult to eliminate, so the best strategy is to control the colonies through treatment at the wells.

The bacterial counts were found to be relatively high and required some form of treatment. Further analysis indicated that the lime softening process, because of the mixing that occurred and the “sticky” constituency of the bacteria, did a relatively good job at removing it. However, the proposed membrane softening process would not be as effective in this removal. The bacteria would foul the proposed membranes in the plant and could lead to breaching and lower plant efficiencies. Further review indicated the corrosion of the steel pipe at the lime softening plant could also be partially accounted for as a result of the bacteria being brought in with the raw water.

To address this situation, the district proceeded with bids to initiate a routine disinfection program that added 2,000 to 6,000 parts per million (ppm) of calcium hypochlorite on a monthly basis. In addition, all ferrous material was removed from the wells, PVC slip lining was installed in the five original steel casings (with a loss of capacity), and a new composite column pipe installed. All pumps were changed to bronze construction. These pumps were not only less costly, but faster to get and more resistant to microbiological attack than the stainless steel pipe. All new wells were installed with PVC casings, bronze pumps, and a composite column pipe called Wellmaster®.
The district monitored the total bacterial count changes and found that despite initial counts in excess of 10,000 colony forming units (CFU)/100 mL, with monthly disinfections, the counts began to decline relatively quickly. However, any prolonged time between disinfections or lowering the water table, caused the bacterial counts again to climb. A side effect the district noted was that some well materials deteriorated during the disinfection program, including the composite Wellmaster® pipes. The column pipes were removed from the wells each time they were chlorinated to address the deterioration of the column pipe.

Near the end of the construction of the membrane water treatment plant, the disinfection program lapsed when the contract ended. During plant startup, a significant quantity of the bacteria did get into the membrane units, requiring extensive cleaning of the membranes with bisulfite, citric acid, and hydrogen peroxide to eliminate the growth and restore the membrane efficiency. The extent of cleaning that was performed on these membranes is not desirable in a new membrane facility where the membranes are expected to have a life of five to seven years and the facility is expected to have a life in excess of 30 years.

A second plugging problem occurred in well No. 12. Symptoms included a significant loss of specific capacity, inability to pump the required amounts, and inability to remove the pump. A television camera was dropped down the well. Significant quantities of iron, sulfur-reducing, and Pseudomonas bacteria were noted on the walls of the casing pipe. When the camera reached the pump, the casing appeared to have collapsed into the shape of a figure eight. The pump was below this collapsed point and could not be withdrawn.

Analysis of the problem indicated that the reduction of well capacity (due in part to the bacteria) and lower aquifer levels caused by drought in 1990 and 1991 caused the drawdown to reach a point just a few feet above the top of the pump. Because submersible pumps are designed to have several feet of water above them to keep them cool, when the water dropped to this point, the pumps heated enough to cause the PVC casing to buckle.

As a result of this analysis, all the submersible pumps were lowered 10 to 20 feet (depending on the well). The pump in well No. 12 was cut loose and the possibility of cutting out the collapsed section of the pipe and splicing in a new one was considered. However, because of the cost for the splicing and the resulting loss of capacity, the well was abandoned.

The Collier County Water Sewer District’s experience indicates that bacterial fouling can lead to column pipe damage, membrane fouling, collapsed casings, and lower pumping capabilities.

City of Venice Wellfield

The city of Venice is located in Sarasota County, 40 miles south of Tampa, Fla. As a coastal community, the city has relatively little fresh water available. The overlying formation is undifferentiated sand and clay formation that lacks the ability to provide significant quantities of water. As a result, the city of Venice used the next aquifer formation, the Lower Hawthorn.

The production zone for the city of Venice is located between 200 to 320 ft below sea level. Each well produces 1 mgd, and the wells vary from 5 to 21 years old. The raw water, while slightly brackish, has little color and hydrogen sulfide, and as a result, lends itself to treatment with low-pressure reverse osmosis.

The city has a 4.0 mgd low pressure, reverse osmosis plant to treat the brackish Hawthorn water. Typically, low-pressure reverse osmosis systems have a 70 percent recovery rate. However, because of high sulfates in the raw water, the city of Venice is
able to recover only 50 percent of the raw water as permeate. As a result, nearly 8 mgd is required to produce 4 mgd for the distribution system.

The city experienced problems in a number of its wells, including an increase in drawdown, a decrease in specific capacity, and pipe and pump cavitation. In addition, some sand was found in the prefilters. An increase in sulfates and chlorides was noted and slime began to be produced on stainless steel column pipes in the pumps. A video camera inspection was made in several wells. In one well, at 227 ft below sea level, sand and other materials were entrained in the open hole of the formation. The video indicated that the formation was producing intermittent fine sand and silt that were deleterious to the cartridge filters and the reverse osmosis membranes. In addition, the wells contained a significant quantity of *Pseudomonas* bacteria species. The bacteria were attacking ferrous materials and causing the formation to plug, resulting in the increased drawdown, pump failures, and lower water quality. The bacteria also have a potential deleterious effect on the reverse osmosis process efficiency.

In response to the analysis, the city instituted a routine disinfection program of 6,000 ppm of chlorine on a monthly basis. Over time, the city staff began to perform the routine disinfection and the timing has decreased to once every 90 days. A program to routinely sample for microbiological parameters was instituted, and a water quality and water level monitoring program was developed. All pumps were changed from stainless steel to bronze.

The sand problem could have been partially caused by the check valves opening and shutting on the wells, so slow opening and closing check valves were installed on each well to reduce the sand production. A sand separator was installed before the headworks of the pretreatment plant. The sand separator is a large, Lakos Laval, stainless steel sand separator which mechanically removes sand from the raw water. A sand separator is relatively easy and inexpensive to install.

A second well showed similar signs: an increase in drawdown, an increase in bacterial counts, and an increase in total dissolved solids, chlorides, and sulfates. Clogging also occurred. In viewing the well, the production well had become connected with an improperly abandoned well constructed seven years earlier in a deeper saline zone of the Floridan Aquifer. The abandoned Floridan well was contributing poor water quality and bacteria via fissures located in the lower portion of the well.

As a result of the physical log and television survey, the city plugged the lower portion of the well with Type II sulfate-resistant cement between 350 and 450 ft, which is depicted in Figure 7-6. The well was then disinfected and a routine monitoring of the bacteria and the chlorides continued. Compilation of information after the plugging showed a steady and continuing decline of the chloride levels from a high of over 2,500 mg/L to about 500 mg/L over the period of just a few weeks. (Figure 7-7).

Conclusions from the Venice wellfield indicate that microbiological fouling may be a more prevalent problem than anticipated and that more sophisticated treatment methods may be more susceptible to the microbiological fouling than more traditional methods. In addition, deeper wells may be severely affected by improperly abandoned wells. A full investigation of such wells must be conducted. The disinfection program restored the capacity of the wellfield and the plugging of the well to seal off the impacts of the improperly abandoned well did not significantly decrease the well’s capacity.
Elkhart, Ind.

The South Wellfield, in Elkhart, Ind., one of three operated by the city’s Department of Public Works and Utilities (DPWU), is developed in the glacio-fluvial outwash Yellow Creek tributary of the St. Joseph River aquifer. This wellfield is developed with three high-capacity screened “gravel-wall” wells and supplies a conventional aeration/pressure-filtration water treatment plant. Over time, these wells have experienced performance decline, adversely affecting the economy of the plant and its operations, with periodic attempts to restore production capacity.

Wells in the South Wellfield have experienced a decline in performance since at least 1971, when the first rehabilitation was conducted on well No. 1 (the northern-most of three). Each of the wells was treated several times. From the outset, the problem was attributed to “iron bacteria” and treated for such periodically. In its 1998 analysis, a biofouling cause was confirmed. A review of the treatment history since 1971 showed that, despite repeated treatments, a pattern of continual decline was evident. However, this decline was reversed somewhat by rehabilitation events. Specific capacity (yield per drawdown) is a readily calculated indicator of hydraulic performance change in wells.
Well No. 1, having the lowest initial specific capacity of the three (35 gpm/ft), declined below the optimal pumping economics point most quickly. Rehabilitation was first attempted six years after completion with no improvement, and then was permitted to decline in performance to uneconomical levels before a series of treatments from 1981 to 1989 kept specific capacity in the mid- to upper 20s gpm/ft range. Treatment effectiveness then fell off rapidly, with specific capacity falling to as low as 2 gpm/ft, despite conducting alternative methods of treatments, until the well was effectively abandoned in 1995. The following table summarizes treatments in well No. 1:

<table>
<thead>
<tr>
<th>Date</th>
<th>Treatment</th>
<th>Before Capacity</th>
<th>After Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec. 1971</td>
<td>acidization (A-6), phosphate (P-6, B-6), surging</td>
<td>28(2)</td>
<td>27.9</td>
</tr>
<tr>
<td>Sept. 1982</td>
<td>acidization (A-6), phosphate (P-6, B-6) with HTH, surging(3)</td>
<td>18.9</td>
<td>26</td>
</tr>
<tr>
<td>Sept. 1985</td>
<td>phosphate (P-6) with HCl acidization and A-6, surging</td>
<td>20</td>
<td>28.3</td>
</tr>
<tr>
<td>Dec. 1987</td>
<td>P6 + HTH, light acidization, alternating, surging</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>Nov. 1989</td>
<td>phosphate and acidization, chlorine and wetting agent, phosphate + wetting agent, surging</td>
<td>20.7</td>
<td>23.7</td>
</tr>
<tr>
<td>Oct. 1991</td>
<td>phosphate with Cl₂, wetting agent, acidization alternating, surging</td>
<td>19.1</td>
<td>18.6</td>
</tr>
<tr>
<td>Mar. 1992</td>
<td>surged and caustic soda added</td>
<td>12.5</td>
<td>10.65</td>
</tr>
<tr>
<td>1993</td>
<td>Sonar Jet treatment</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>1995</td>
<td>Aquafreed treatment</td>
<td>2</td>
<td>11</td>
</tr>
</tbody>
</table>

(1) Capacity = specific capacity (yield Q in gal/min per drawdown s in ft).
(2) Original Capacity = 34.6
(3) Treatments typically included alternating treatment chemical types and surging. Several hundred pounds of chemical typically used.

Wells No. 2 and 3, with higher initial specific capacities (51.2 gpm/ft and 88.6 gpm/ft, respectively), appeared to decline in performance more slowly. Well No. 2 was not rehabilitated until 21 years after original construction and specific capacity had fallen to 63 percent of original. Well No. 3 had a similar history, but was permitted to drop to <40 percent of original capacity in 14 years.

On both wells No. 2 and 3, two rehabilitations each were performed in 1987 to 1991 once problems were recognized by the DPWU water staff. Chemicals used are as indicated. The following summarizes the results:

<table>
<thead>
<tr>
<th>Events</th>
<th>Treatment</th>
<th>Before Capacity</th>
<th>After Capacity</th>
<th>% Original Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
<td>Acidization, phosphate, surging</td>
<td>34</td>
<td>44</td>
<td>86</td>
</tr>
<tr>
<td>1991</td>
<td>Acidization, phosphate, surging</td>
<td>33</td>
<td>41(1)</td>
<td>80</td>
</tr>
</tbody>
</table>

Well No. 3

<table>
<thead>
<tr>
<th>Events</th>
<th>Treatment</th>
<th>Before Capacity</th>
<th>After Capacity</th>
<th>% Original Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
<td>Acidization, phosphate, surging</td>
<td>34</td>
<td>62.5</td>
<td>71</td>
</tr>
<tr>
<td>1991</td>
<td>Acidization, phosphate, surging</td>
<td>48</td>
<td>65.6(2)</td>
<td>74</td>
</tr>
</tbody>
</table>

(1) Capacity for 898 gpm.
(2) Capacity for 932 gpm.
For well No. 2, the 1987 treatment restored capacity to 86 percent of original, but capacity declined to below the 1986 pre-cleaning value by 1991. The 1991 treatment restored capacity to 82 percent of original. However, note that the capacity reported was for 898 gpm, and not 1,420 gpm. Specific capacity for any well at any point in time declines with increased pumping rate (Driscoll 1986). An estimated capacity for 1,420 gpm at that time would have been less than 25 gpm/ft. Capacity then was permitted to decline precipitously to 23 gpm/ft at 800 gpm prior to cleaning in September 1998.

For well No. 3, the 1987 treatment restored capacity to 71 percent of original, but performance declined to 53 percent of original by 1991. The 1991 treatment restored a reported capacity (for 932 gpm) to 74 percent of original. An estimated capacity for 1,240 gpm at that time would have been something less than 49 gpm/ft. Capacity then was permitted to decline precipitously to <20 gpm/ft at 393 gpm prior to cleaning in September 1998.

Contributing Factors in Well Performance Decline in the South Wellfield

An analysis of the history of treatment performance and well performance decline in these wells shows several contributing factors:

1. The aquifer and well conditions have clogging potential. The working mechanisms are a combination of fine sediment migration from the glacio-fluvial formation (mixed particle sizes) and biofouling. Fine sediment migrates toward the well. Biofouling theoretically forms in a cylindrical band through the depth into the formation where iron oxidizes to the screen face. While biofouling does reduce hydraulic conductivity, it clogs more effectively as it traps in-migrating particles.

2. The wells were permitted to decline in performance below the point where full-performance recovery was possible. Below about 75 to 85 percent of original or target specific capacity, it requires a great amount of development energy to restore performance, and most especially to remove nutrients and residual debris to slow the return to well decline after cleaning.

Tragically, Elkhart’s wellfield operations team from the mid-1980s to early 1990s had a well maintenance monitoring and treatment plan in place that could have halted decline earlier. However, this plan was permitted to lapse for several reasons. This kind of intermittent well maintenance history is more the exception than the rule in wellfield management.

Prior to 1998, phosphate-containing surfactant compounds were used in each treatment in large quantities. These were selected with the best of intentions based on information provided by chemical suppliers and short-term (<10 year) experience in wellfields (including Elkhart’s) that showed good initial results. However, phosphorus-containing surfactants are suspected of ultimately being counterproductive in well rehabilitation use because of residual phosphate (a limited nutrient in groundwater). Phosphorous is adsorbed to clays by cation exchange and available for bacteria to use in metabolism and cell growth and development (e.g., Borch et al. 1993; Smith 1995; and Layne Inc., internal corporate communication).

A condition commonly observed in sand-and-gravel wells treated repeatedly over time using phosphorus-containing compounds is a change in the type of biofouling present. It is transformed from a low-biomass filamentous form toward a bulkier, slimy type of biomass that is more difficult to remove using conventional rehabilitation methods. This change results in an acceleration of the performance decay in such wellfields. The change from short-term success to long-term acceleration of decline seems to be illustrated by the capacity history graph supplied by Peerless Midwest for
Well No. 1. Successes in the 1980s are followed by rapid declines in performance persisting to the present.

Evidence of a possible change in biofouling in the DPWU South Wellfield was provided by a review of color downhole videos performed on well No. 1. While in the past, the problem was described as “iron bacteria” (filamentous iron-related biofouling), recent videos showed a more gray, flocculent, slimy growth. BART methods (Droycon Bioconcepts) and microscopy (methods per *Standard Methods*; Smith 1992; Smith 1996) confirmed potential for intense slimy growth. Additionally, active denitrifying microflora were detected. These oxidize Fe$^{2+}$ to Fe$^{3+}$ anaerobically, opening up the possibility of a deep-set Fe$^{3+}$ clog.

The effectiveness of conventional mechanical development used in past treatments was difficult to evaluate based on file information, but the approach to treatment prior to 1998 was more focused on chemical application than development action. Less-than-optimal redevelopment likely resulted in incomplete removal of clogging mass from the gravel pack and formation.

Because (1) the wells appeared to be fundamentally sound, and (2) the cost of rehabilitation to restore performance was favorable compared to new construction, the consultant recommended rehabilitation over either well reconstruction or abandonment and new construction. Target yields and specific capacities were calculated based on pumping goals (production needed and maximum drawdowns) and power efficiency (using Helweg et al. 1983 formulas).

Based on the analysis of causes, a Blended Chemical Heat Treatment (BCHT™) program (process documented in Leach et al. 1991; Smith 1995; Alford and Cullimore 1999) was recommended to break through the expected clogging material and restore performance. The BCHT process (which employs a mixture of chemicals, heated upon injection) has a history of effectiveness on difficult well clogs promoted by the slime-forming biofouling, similar to that detected in the South Wellfield tests.

In this case, the treatment comprised a combination of acetic acid (amended to reduce pH to <2) and no phosphate polyelectrolyte (ARCCSperse CB-4 and PM-30, ARCC, Daytona Beach, Fla.), jetted in at 180°F (at the nozzle), with a program of extensive mechanical development using double surge block and airlift pumping. This program was used on both wells No. 1 and 3.

Because of cost differences and as a comparison, well No. 2 was treated with hydrochloric acid, calcium hypochlorite and development. Phosphate-containing compounds were not used in any treatments but replaced as surfactants by the ARCCSperse products.

Well No. 1 was in extremely poor shape prior to cleaning (Capacity = 8.2 at 402 gpm). After the initial chemical charge, with minimal development, specific capacity fell to 5 gpm/ft. This was probably due to development action collapsing clogging material against the screen, but it resulted in some short-term hand-wringing. Surfing and airlift began a recovery over one week to 16.1 gpm/ft at 737 gpm, an economically viable level of performance for 1 million gpd, based on calculations. The effectiveness of development was hindered by (1) a delay in commencement of development after chemical loading because of scheduling (under BCHT, development is most effective when commenced while the solution is still hot), (2) some stoppage in development subsequently due to mechanical problems and process “choke points,” and (3) (initially) the effectiveness of development with the tools at hand.

Well No. 3 provided the most effective immediate response to the BCHT approach. After one chemical treatment pass and three days of development, capacity was restored to 55 gpm/ft at 770 gpm from 15.6 gpm/ft at 686 gpm. Capacity reached 61.3 gpm/ft on July 23, 1998, when a large amount of silica sand was pumped in. The
screen was repaired, reducing capacity somewhat. Overall, performance was restored to somewhat less than 1987 post-treatment levels by the end of treatments in 1998.

Well No. 2 was treated differently, using hydrochloric acid, alternating with an alkaline (soda) and chlorine steps, with three days' development. Success in immediate redevelopment response here was also evident in increased specific capacity: from 22.8 gpm/ft at 800 gpm to 38.7 gpm/ft at 1,002 gpm.

Comparing the effectiveness of the two chemical regimes will require evaluation over time. Acid-amended acetic acid has been shown in over 3,000 well applications to perform better than hydrochloric acid and chlorine on very advanced slime-forming biofouling. However, in wells where the clogging is not compacted, as in well No. 2, various chemical treatments can have similar results. History with aggressive biofouling well environments shows that the benefits of both BCHT (and the amended acetic acid chemical choice) and effective redevelopment come with delayed decline in performance after rehabilitation, rather than in obvious immediate effects.

Long-term effectiveness of these treatments in the South Wellfield will depend on followup by the Elkhart DPWU. The following recommendations are being considered by the DPWU:

1. An immediate short-term followup should be additional low-intensity redevelopment of each well in the South Wellfield in the next two years to complete the work begun with the 1998 rehabilitation actions. Each well should respond to additional development and light chemical treatment by increasing in performance if it is not permitted to decline in performance first.

2. For further benefit, a program of professionally developed, city administered, maintenance evaluation and treatment is essential in the South Wellfield, and by extension, all three wellfields. A continued resumption in performance decline can be expected if no maintenance treatment actions are taken. The lapse in preventive maintenance treatments after 1992 almost certainly contributed to the state of the wells prior to the 1998 treatments.

3. To best achieve these goals, all monitoring, treatment, and repair activities should be planned as part of a system-wide strategic wellfield maintenance program that is both systematic and effective.

4. Within the maintenance plan, personnel training and wellfield equipment modification are recommended to make the process easier and more effective.

5. A non-contractor advisory role on major treatment events: Professional assistance in this area by people highly experienced in well maintenance and rehabilitation helps to assure that a wellfield operator’s objectives and best interests are served.

The Elkhart experience clearly shows what happens when wells are permitted to decline in performance. The experience in Elkhart’s South Wellfield should not be considered unique. Prospects for success in well maintenance in other wellfields also depend on the kind of analysis, review, and planning documented here. As Elkhart has, any water supplier can benefit from (1) honest and complete scrutiny of successes (complete and incomplete), lapses and failures in its maintenance history, and (2) taking advantage of the many improvements now available in the practice of well analysis, treatment, and maintenance.

SUMMARY

While wells provide good service to most utilities for many years, wells are subject to fouling and other performance problems. These concerns include
• mechanical failures, including failures of electrical motors and pumps, and failures of valves.
• poor operating and maintenance procedures.
• poor well design and construction practices including insufficient placement of grout, improper design of pumps, valves, fittings, and excessive drawdown allowances.
• hydrogeologic constraints that are unassessed at the time of design or change over time, such as sand, clay, or rock layers that are unstable and collapse into the borehole; naturally occurring or induced fracturing and faulting; long-term water quality changes caused by changes to the hydraulic regime such as dams; water hammer to the aquifer; effects due to mining of the water or introduction of chemicals and microorganisms; and naturally occurring phenomena (such as sinkholes, karst terrain features, or faults).
• high silt or sand content caused by failure to develop the wells fully or intercepting sand or silt layers that have not or cannot be sealed off in the borehole or corrected in well design.

All these problems may exist in conjunction with, or as a result of, microbiological fouling problems in wells. As treatment technologies advance, the need to review and correct well performance problems, especially fouling concerns, has taken on greater significance.

REFERENCES

BIBLIOGRAPHY

Groundwater quality is as important as the quantity of supply. Groundwater near the land surface, at depths of 500 ft (150 m) or less, ordinarily is subject to active replenishment and circulation. Precipitation, which travels overland to streams or infiltrates below the land surface to become soil water and groundwater, dissolves rock minerals and organic matter in the process. Groundwater contains a variety of chemicals resulting from natural sources, as well as from overlying land uses and local management practices.

The 14 principal chemical constituents of natural surface and groundwater and their effects are listed in Table 8-1. Only small to moderate amounts of these substances occur in most freshwater sources. Moderate amounts of dissolved minerals make water more palatable, as mineral-free water tastes flat to most people. Minerals are also important to human health and plant and animal growth. Some minerals reduce the corrosiveness of the water in pipelines and storage tanks.

The chemical, physical, biological, and radiological quality of groundwater varies widely. Acceptable quality depends on water use. For example, the criteria for safe and healthy drinking water are much more stringent than for water used for industrial and agricultural purposes.

Chemical and Physical Characteristics

Groundwater possesses chemical and physical characteristics due to characteristics of the water and the physical and geochemical setting of the groundwater. The most common of these are hydrogen-ion concentration (pH), temperature, hardness, and gas content. These characteristics are discussed in the following paragraphs.

pH. Most groundwater has a pH value ranging from 6.0–8.5. Groundwater having a pH greater than 9.0 is unusual, except when contaminated. Many thermal springs yield water with a pH lower than 6. River water unaffected by contaminants generally has a pH between 6.5 and 8.5. Special techniques are necessary to accurately measure pH (Wood 1976).
Table 8-1 The principal natural chemical constituents in water, concentrations, and effects of usability

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Concentrations in Natural Water</th>
<th>Effects of Usability of Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica (SiO₂)</td>
<td>Ranges generally from 1.0 to 3.0 mg/L, although as much as 100 mg/L is fairly common; as much as 4,000 mg/L is found in brines.</td>
<td>In the presence of calcium and magnesium, silica forms a scale in boilers and on steam turbines that retards heat and fluid flow; the scale is difficult to remove. Silica may be added to soft water to inhibit corrosion of iron pipes.</td>
</tr>
<tr>
<td>Iron (Fe)</td>
<td>Groundwater having a pH of less than 8.0 may contain 10 mg/L; rarely as much as 50 mg/L may occur. Acid water from thermal springs, mine wastes, and industrial wastes may contain more than 6,000 mg/L.</td>
<td>More than 0.1 mg/L precipitates after exposure to air; causes turbidity, stains plumbing fixtures, laundry and cooking utensils, and imparts objectionable tastes and colors to foods and drinks. More than 0.2 mg/L is objectionable for most industrial uses.</td>
</tr>
<tr>
<td>Manganese (Mn)</td>
<td>Generally 0.20 mg/L or less. Groundwater and acid mine water may contain more than 10 mg/L. Water at the bottom of a stratified reservoir may contain more than 150 mg/L.</td>
<td>More than 0.2 mg/L precipitates on oxidation; causes undesirable tastes, deposits on foods during cooking, stains plumbing fixtures and laundry, and fosters growth in reservoirs, filters, and distribution systems. Most industrial users object to water containing more than 0.2 mg/L.</td>
</tr>
<tr>
<td>Calcium (Ca)</td>
<td>Averages about 15 mg/L in surface water, higher in groundwater. As much as 600 mg/L in some western streams; brines may contain as much as 75,000 mg/L.</td>
<td>Calcium and magnesium combine with bicarbonate, carbonate, sulfate, and silica to form heat-retarding, pipe-clogging scale in boilers and in other heat-exchange equipment. Calcium and magnesium combine with ions of fatty acid in soaps to form soap suds; the more calcium and magnesium, the more soap required to form suds. A high concentration of magnesium has a laxative effect, especially on new users of the supply.</td>
</tr>
<tr>
<td>Magnesium (Mg)</td>
<td>As much as several hundred milligrams per liter in some western streams; ocean water contains more than 1,000 mg/L and brines may contain as much as 57,000 mg/L.</td>
<td>Calcium and magnesium combine with bicarbonate, carbonate, sulfate, and silica to form heat-retarding, pipe-clogging scale in boilers and in other heat-exchange equipment. Calcium and magnesium combine with ions of fatty acid in soaps to form soap suds; the more calcium and magnesium, the more soap required to form suds. A high concentration of magnesium has a laxative effect, especially on new users of the supply.</td>
</tr>
<tr>
<td>Sodium (Na)</td>
<td>As much as 1,000 mg/L in some western streams; about 10,000 mg/L in sea water; about 25,000 mg/L in brines.</td>
<td>More than 50 mg/L sodium and potassium in the presence of suspended matter causes foaming, which accelerates scale formation and corrosion in boilers. Sodium and potassium carbonate in recirculating cooling water can cause deterioration of wood in cooling towers. More than 65 mg/L of sodium can cause problems in ice manufacture.</td>
</tr>
<tr>
<td>Potassium (K)</td>
<td>Generally less than about 10 mg/L; as much as 100 mg/L in hot springs; as much as 25,000 mg/L in brines.</td>
<td>More than 50 mg/L sodium and potassium in the presence of suspended matter causes foaming, which accelerates scale formation and corrosion in boilers. Sodium and potassium carbonate in recirculating cooling water can cause deterioration of wood in cooling towers. More than 65 mg/L of sodium can cause problems in ice manufacture.</td>
</tr>
</tbody>
</table>

Table continues on next page.
Table 8-1 The principal natural chemical constituents in water, concentrations, and effects of usability

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Concentrations in Natural Water</th>
<th>Effects of Usability of Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonate
(CO$_3$)</td>
<td>Commonly 0 mg/L in surface water; commonly less than 10 mg/L in groundwater. Water high in sodium may contain as much as 50 mg/L of carbonate.</td>
<td>Upon heating, bicarbonate is changed into steam, carbon dioxide, and carbonate. The carbonate combines with alkaline earths—principally calcium and magnesium—to form a crust-like scale of calcium and magnesium carbonate that retards flow of heat through pipe walls and restricts flow of fluids in pipes. Water containing large amounts of bicarbonate and alkalinity is undesirable in many industries.</td>
</tr>
<tr>
<td>Bicarbonate
(HCO$_3$)</td>
<td>Commonly less than 500 mg/L; may exceed 1,000 mg/L in water highly charged with carbon dioxide.</td>
<td>Sulfate combines with calcium to form an adherent, heat-retarding scale. More than 250 mg/L is objectionable in water in some industries. Water containing about 500 mg/L of sulfate tastes bitter; water containing about 1,000 mg/L may be cathartic.</td>
</tr>
<tr>
<td>Sulfate
(SO$_4$)</td>
<td>Commonly less than 1,000 mg/L except in streams and wells influenced by acid mine drainage. As much as 200,000 mg/L in brines.</td>
<td>Chloride in excess of 150 mg/L imparts a salty taste. Concentrations greatly in excess of 150 mg/L may cause physiological damage. Food processing industries usually require less than 250 mg/L. Some industries—textile processing, paper manufacturing, and synthetic rubber manufacturing—desire less than 100 mg/L.</td>
</tr>
<tr>
<td>Chloride
(Cl)</td>
<td>Commonly less than 10 mg/L in humid regions; tidal streams contain increasing amounts of chloride (as much as 19,000 mg/L) as the bay or ocean is approached. About 19,300 mg/L in sea water; and as much as 200,000 mg/L in brines.</td>
<td>Chloride concentration between 0.6 and 1.7 mg/L in drinking water has a beneficial effect on the structure and resistance to decay of children’s teeth. Chloride in excess of 1.5 mg/L in some areas causes mottled enamel in children’s teeth. Fluoride in excess of 6.0 mg/L causes pronounced mottling and disfiguration of teeth.</td>
</tr>
<tr>
<td>Fluoride
(F)</td>
<td>Concentrations generally do not exceed 10 mg/L in groundwater or 1.0 mg/L in surface water. Concentrations may be as much as 1,600 mg/L in brines.</td>
<td>Fluoride concentration between 0.6 and 1.7 mg/L in drinking water has a beneficial effect on the structure and resistance to decay of children’s teeth. Chloride in excess of 1.5 mg/L in some areas causes mottled enamel in children’s teeth. Fluoride in excess of 6.0 mg/L causes pronounced mottling and disfiguration of teeth.</td>
</tr>
<tr>
<td>Nitrate
(NO$_3$)</td>
<td>In surface water not subjected to pollution, concentration of nitrate may be as much as 5.0 mg/L but commonly is less than 1.0 mg/L. In groundwater the concentration of nitrate may be as much as 1,000 mg/L where polluted, but generally less than 50 mg/L.</td>
<td>Water containing large amounts of nitrate (more than 100 mg/L) is bitter tasting and may cause physiological distress. Water from shallow wells containing more than 45 mg/L has been reported to cause methemoglobinemia in infants. Small amounts of nitrate help reduce cracking of high-pressure boiler steel.</td>
</tr>
<tr>
<td>Dissolved solids</td>
<td>The mineral constituents dissolved in water constitute the dissolved solids. Surface water commonly contains less than 3,000 mg/L; streams draining salt beds in arid regions may contain in excess of 15,000 mg/L. Groundwater commonly contains less than 5,000 mg/L, and most of it at shallow depths contains less than 1,000 mg/L; some brines contain as much as 300,000 mg/L.</td>
<td>More than 500 mg/L is undesirable for drinking and many industrial uses. Less than 300 mg/L is desirable for dyeing of textiles and the manufacture of plastics, pulp paper, and rayon. Dissolved solids cause foaming in steam boilers; the maximum permissible content decreases with increases in operating pressure.</td>
</tr>
</tbody>
</table>

Temperature. In contrast to the seasonal and diurnal fluctuations of surface-water temperature, the temperature of groundwater is constant. The exception is the temperature of groundwater near the surface, which may fluctuate several degrees during the year in response to the seasons. A constant groundwater temperature helps maintain the palatability of drinking water.

The mean temperature of groundwater at shallow depths is generally 2° to 3°F (17° to 16°C) above the mean annual air temperature. Below this zone of solar influence, the temperature of groundwater increases at a rate of approximately 1°F (0.6°C) for each 64 ft (20 m) of depth. This increase mirrors the geothermal gradient of the earth’s crust. With few exceptions, groundwater pumped from deep wells has higher temperatures than that pumped from shallow wells.

Hardness. Hardness is derived mainly from calcium and magnesium, although other divalent metallic cations may also contribute. These metallic ions inhibit lathering by reacting with soap to form undesirable precipitates and can combine with certain anions in boiler water to form efficiency-robbing scale on tank walls and in pipes.

In aquifers containing hard water, lowering the water level in a well during pumping and the corresponding reduction in water pressure at the intake screen may precipitate calcium and magnesium compounds that clog the well screen. In an unscreened well, the precipitates may clog the openings in the aquifer immediately adjacent to the well bore with comparable reduction in inflow of water.

A number of similar numerical scales for rating water hardness have been devised and published, including, for example, the following scale (Durfor and Becker 1964):

<table>
<thead>
<tr>
<th>Hardness Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–60 mg/L of CaCO₃</td>
<td>Soft</td>
</tr>
<tr>
<td>61–120</td>
<td>Moderately hard</td>
</tr>
<tr>
<td>121–180</td>
<td>Hard</td>
</tr>
<tr>
<td>More than 180</td>
<td>Very hard</td>
</tr>
</tbody>
</table>

Hardness of water used for domestic purposes is not objectionable in concentrations below about 100 mg/L. The hardness of groundwater throughout much of the United States is less than 100 mg/L. However, groundwater in gypsiferous and carbonate bedrock formations of the north central region (including North Dakota, South Dakota, south Texas, Iowa, and parts of surrounding states) and groundwater in other parts of the nation that is underlain by sedimentary rocks rich in calcium and magnesium generally exceed this level. In these areas, hardness levels of 300 mg/L are common, and levels as high as 1,000 mg/L occur in some places.

Gases. As precipitation falls through the atmosphere, it comes in contact with soluble gases that may combine with the water droplets. Dust and other particulate matter suspended in the air add chemical constituents to the water. The combination of precipitation and carbon dioxide (CO₂) forms carbonic acid (H₂CO₃), increasing the acidity of precipitation. Additional carbon dioxide, originating from organic processes at the land surface and in the soil zone, dissolves in groundwater, further increasing its acidity and its capacity to dissolve mineral matter.
Oxygen (O₂) and hydrogen sulfide (H₂S) are other important gases that occur in groundwater. The concentration of dissolved oxygen in shallow groundwater is usually less than 10 mg/L, and in deep-lying groundwater it may be virtually absent. Dissolved oxygen is harmless to health and may improve the palatability of water. Dissolved oxygen does contribute to water’s corrosiveness to metals, most aggressively where carbon dioxide or low pH are present. Hydrogen sulfide gas is generated in groundwater by decomposing natural organic substances and sulfate-reducing bacteria acting on organic materials. Hydrogen sulfide is corrosive in the gaseous state, and combines with water to form a weak acid solution.

Methane (CH₄), generated by the decomposition of vegetation and other organic materials, is prevalent in groundwater and soil moisture zones in small concentrations. Larger quantities, sufficient for domestic or small industrial heating and energy requirements, may be formed in peat bogs, coal mines, or large landfills containing thick deposits of decomposing organic wastes. Fires and explosions in mines, basements, water wells, and petroleum wells often are attributable to the accumulation of methane gas.

GROUNDWATER CONTAMINATION

Groundwater contamination is a widespread and challenging problem. Contaminants often flow undetected into groundwater aquifers, migrating through the aquifer until a sizable portion of the aquifer has become degraded. Even where physically and economically practical, rehabilitating a contaminated aquifer is difficult, complicated, and expensive. In arid regions, where water resources are limited, aquifer remediation may be the only option for a reliable, long-term water source.

Irreversible damages to some of the nation’s groundwater resources has stimulated efforts to reduce the influx of contaminants at their sources. Prevention is simpler, more effective, and less costly than cleanup measures. However, even after elimination of contamination sources, aquifers can remain contaminated for decades as a result of the slow rate of groundwater movement and the corresponding slow rate of dilution and flushing of contaminating substances. Biodegradation, the breakdown of contaminants by microorganisms in the subsurface, is commonly used today for cleaning up contamination in many areas.

Biological Contaminants

There are more than 100 microorganisms that are considered human pathogens (Feacham, et al. 1981), most of which are introduced into the body via ingestion, inhalation, dermal contact, or entry through wounds or body orifices (Hurst 1996). Infected persons excrete large numbers of these pathogens, which often find their way into ground and surface waste systems. Each organism has a different dose-response relationship with a vastly different threshold dose for infection. Typically, bacterial infections require very high quantities of these organisms, while with certain viruses, one organism is sufficient to cause infection. Fortunately, available studies indicate that bacteria are generally removed during wastewater treatment and disinfection, but depending on the treatment process employed, viruses may only experience a 50 percent removal rate (Yates et al. 1987).

Relevant classes of microorganisms. Microorganisms associated with waterborne disease can be broken into three groups: protozoans, bacteria, and viruses. Each has unique environmental fate and effect characteristics in groundwater systems. The following sections summarize each genre.
Protozoans. Protozoans and their cysts are common in surface waters and are much larger than either viruses or bacteria. The cyst stage is an encapsulation that protects protozoans from harsh environmental conditions, such as drought in the case of Duck botulism. Cryptosporidium and Giardia lamblia are the two protozoans most studied because of their presence in drinking water (generally unfiltered surface water), and their recent link to waterborne-illness outbreaks (Milwaukee 1993). Giardia lamblia is believed to be the most common protozoan pathogen present in surface waters. Its population appears to remain constant throughout the year in surface water impoundments (Rose and Carnahan 1992). Neither Cryptosporidium nor Giardia lamblia appears to be a common groundwater problem except in those aquifers under the influence of surface waters. Both organisms are generally believed to be too large to move significant distances in groundwater systems, and, as a result, they will not be discussed further.

Bacteria. Bacteria are the most widely distributed lifeform on Earth (Chapelle 1993). Chapelle notes that bacteria are extremely important to consider in groundwater projects because they inhabit virtually every subsurface environment, producing methane gas and consuming organic rich soils. The key bacteria families responsible for waterborne diseases include Legionella, the Pseudomonads, Klebsiella, Escherichia coli, Shigella, Enterobacter, Salmonella, and Vibrio cholerae, some of which are pathogenic. The pathogenic bacteria are approximately 0.4 to 14 µm long and 0.2 to 12 µm wide, which means they are much smaller than protozoans, thus making it easier for them to move in the subsurface. Most of them also belong to a classification called gram negative bacteria, which are found extensively in subsurface situations.

Bacteria have their own enzyme equipment and most are motile, which allows them to move in the subsurface. Bacteria reproduce by splitting into daughter cells, each of which continues to split, forming additional bacteria and eventually a biomass. The respiration ability of bacteria permits them to survive in soils and aquifers. There are three respiration types: (1) those bacteria that use inorganic chemicals to serve as electron acceptors such as oxygen, ferric iron, and sulfates, (2) those that are aerobic—requiring oxygen, and (3) those that are facultative anaerobes—capable of fermentation or using oxygen as electron receptors (Chapelle 1993). The respiration mechanism is important because it affects the ability of bacteria introduced to colonize wells and the aquifer; it also affects the growth rate of bacteria indigenous to the aquifer as a result of the constituents introduced.

The most common opportunistic bacterial pathogen is Pseudomonas aeruginosa, which has a colonization rate of 2.6 to 24 percent of the human population but rarely is viewed as a public health threat in water supplies (USEPA Web site). However, it is the most common infection in hospitals. Pseudomonas aeruginosa is an extraordinarily versatile organism that will live in nearly any environment. Pseudomonas aeruginosa requires no specific vitamins, growth factors, or amino acids; it is a facultative anaerobe. However, the most important concern of this pathogen is its ability to create a slime matrix that encapsulates other bacteria and protects them from otherwise harsh aquifer conditions. Commonly found bacteria in the subsurface include Gallionella and Desulfuviibro. Gallionella is an obligate aerobe that obtains energy by oxidizing dissolved ferrous iron to form ferric oxyhydroxides—meaning it will be a problem in wells constructed with steel materials (Chapelle 1993). Desulfuviibro is a sulfur-reducing bacteria that uses hydrogen or simple organic compounds as an energy source and sulfates as
the terminal electron acceptor, which leads to hydrogen sulfide gas formation (Chapelle 1993). Other bacteria may also colonize the slime matrix (Bloetscher et al. 1997).

Viruses. Viruses are molecular entities that possess little or no enzymatic equipment, no energy capability, and no mechanisms for synthesis. Typically, they are 20 to 300 nm in size. They cannot reproduce themselves, requiring a host cell to multiply. Pathogenic viruses tend to be smaller than other viruses and can only be seen with an electron microscope: most are 27 to 70 nm in size and are symmetrical in shape. The majority of viruses tend to be resistant to chloroform, but may be inactivated to various degrees during wastewater treatment processes or by chlorine, bromine, ozone, ultraviolet light, and/or formaldehyde (Block 1989). Viruses are conserved at –20°C (Block 1989).

All viruses are composed of nucleic acid and either RNA or DNA (but not both), which allows them to replicate in other cells, including bacteria—when they are called bacteriophages (Chapelle 1993). Viruses are obligate parasites, always searching for the correct host cell that will allow the virus to multiply. Viruses cannot survive or infect without such a host organism or cell (Chapelle 1993).

Transmission of viruses occurs in one of the following ways (in order of prevalence):

- Fecal to oral pathway
- Person to person
- Respiration

Viruses have been found in a variety of USEPA underground aquifer studies including the following:

- Enterovirus cell cultures were positive in 23% of wells in one study
- 15% of Mississippi River–related wells (some flooded previously)
- 16% of wells designated to develop PRC methods
- 4% of karst formation wells studied

Human viruses found in natural waters are almost always associated with fecal material eliminated from the bodies of infected individuals (Sellwood and Dadswell, date unknown). Therefore, virus concentrations in wastewater are high. Over a million plaque-forming units (PFUs) of viruses are eliminated per gram of fecal matter from infected individuals. The number rises to ten billion for those infected with the *rotavirus* species (Yates et al. 1985). Survival of these viruses demonstrates that *rotaviruses* are sufficiently hardy to survive wastewater treatment and disinfection processes—thus, the regulatory concern regarding these organisms in injection programs.

Major viruses of concern are: Hepatitis A, Coxsackie, ECHO, Norwalk, SRSV, rotaviruses and reoviruses (Block 1989). While vaccines may be available for some viruses, the wild strains never disappear from the environment, indicating that continued vaccinations are important (Bouwer 1991). A summary of those viruses
of concern and the number of studies conducted, as reported by Gerba and Bitton (1984), is as follows:

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poliovirus</td>
<td>3</td>
</tr>
<tr>
<td>Echovirus</td>
<td>31</td>
</tr>
<tr>
<td>Coxsackie A</td>
<td>23</td>
</tr>
<tr>
<td>Coxsackie B</td>
<td>6</td>
</tr>
<tr>
<td>Coxsackie Types 65–71</td>
<td>4</td>
</tr>
<tr>
<td>Hepatitis A</td>
<td>1</td>
</tr>
<tr>
<td>Norwalk</td>
<td>1</td>
</tr>
<tr>
<td>Calcivirus</td>
<td>1</td>
</tr>
<tr>
<td>Astrovirus</td>
<td>1</td>
</tr>
<tr>
<td>Enteric corona</td>
<td>1</td>
</tr>
<tr>
<td>Reovirus</td>
<td>1</td>
</tr>
<tr>
<td>Rotavirus</td>
<td>2</td>
</tr>
<tr>
<td>Adenovirus</td>
<td>37</td>
</tr>
<tr>
<td>Total</td>
<td>114</td>
</tr>
</tbody>
</table>

CHEMICAL CONTAMINANTS

Major chemicals impacting groundwater quality can be divided into organic and inorganic species. Table 8-2 shows standards established for drinking water in the United States. The table reflects the wide spectrum of organic and inorganic toxic chemicals that require surveillance and regulatory measures.

Organics include almost all compounds of carbon such as hydrocarbons but exclude the metallic carbonates such as calcium carbonate (CaCO₃) and sodium carbonate (Na₂CO₃). Inorganic compounds include the remainder of substances, such as nitrate (NO₃), lead, and mercury. Inorganic chemicals with a federal maximum contaminant level (MCL) can be divided into four major groups: nitrogen, total dissolved solids (TDS), minerals, and radionuclides. Organics can similarly be divided into two main groups: volatile organic chemicals (VOCs) and pesticides.

Inorganic Compounds

Nitrogen group. Nitrogen is a constituent of all proteins and is widely distributed in plants and animals. Major sources include

- irrigated agriculture
- dairy and livestock wastes
- sanitary wastes (septic tanks in unsewered areas and wastewater treatment plant discharges)
- landfill leachate
- some manufacturing wastes that are disposed of in waste pits
Three MCLs have been established for nitrate, nitrite, and total nitrogen existing in the forms of nitrate and nitrite. Nitrate has long been regulated because of its acute human health effect of impairing the ability of blood to carry oxygen. For example, nitrogen has affected approximately one-half of the 3,500 drinking water wells in a Southern California region. Figure 8-1 shows that 17 percent of the production, or 233,000 AFY (acre-foot per year), is associated with 469 wells where the MCL for at least one nitrogen standard has been exceeded. Additionally, 32 percent of the production, or 442,000 AFY, comes from 1,180 wells where nitrogen has been detected but at less than the MCLs.

Table 8-2 Maximum contaminant levels for a variety of organic and inorganic chemicals

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Maximum Concentration (in mg/L unless specified)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>0.05</td>
</tr>
<tr>
<td>Barium</td>
<td>1</td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.010</td>
</tr>
<tr>
<td>Chromium</td>
<td>0.05</td>
</tr>
<tr>
<td>Lead</td>
<td>0.05</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.002</td>
</tr>
<tr>
<td>Nitrate (as N)</td>
<td>10</td>
</tr>
<tr>
<td>Selenium</td>
<td>0.01</td>
</tr>
<tr>
<td>Silver</td>
<td>0.05</td>
</tr>
<tr>
<td>Fluoride</td>
<td>4.0</td>
</tr>
<tr>
<td>Total THMs</td>
<td>0.1</td>
</tr>
<tr>
<td>Turbidity (surface-water systems only)</td>
<td>1 ntu to 5 ntu</td>
</tr>
<tr>
<td>Coliform bacteria</td>
<td>1/100 mL (mean)</td>
</tr>
<tr>
<td>Endrin</td>
<td>0.0002</td>
</tr>
<tr>
<td>Lindane</td>
<td>0.004</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>0.1</td>
</tr>
<tr>
<td>Toxaphene</td>
<td>0.005</td>
</tr>
<tr>
<td>2,4-D</td>
<td>0.1</td>
</tr>
<tr>
<td>2,4,5-TP (Silvex)</td>
<td>0.01</td>
</tr>
<tr>
<td>Combined radium-226 and -228</td>
<td>5 pCi/L*</td>
</tr>
<tr>
<td>Gross Alpha</td>
<td>15 pCi/L</td>
</tr>
<tr>
<td>Beta particle and photon activity</td>
<td>4 millirem/yr†</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>5 µg/L</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>5 µg/L</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>2 µg/L</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>5 µg/L</td>
</tr>
<tr>
<td>Benzene</td>
<td>5 µg/L</td>
</tr>
<tr>
<td>p-Dichlorobenzene</td>
<td>75 µg/L</td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td>7 µg/L</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>200 µg/L</td>
</tr>
</tbody>
</table>

*PicoCuries per liter.
†Annual dose equivalent to the body or any internal organ.
Total Dissolved Solids (TDS). The predominant substances in municipal water supplies are inorganic minerals. Together these minerals constitute TDS and commonly include sodium, calcium, magnesium, bicarbonate, sulfate, chloride, and silica. A secondary MCL for TDS has been established because it is an important index of groundwater quality and usability. High TDS impairs aesthetics and practical uses of a municipal supply. For example, elevated calcium and magnesium components in water inhibit soap from lathering.

Minerals. Minerals occur naturally in the earth’s crust and dissolve into water. The minerals group has individual chemical MCLs for both major minerals and trace elements, all of which may reach elevated concentrations in groundwater through human activities. Major minerals include: manganese, sulfate, iron, chloride and, fluoride. Fluoride is the only major mineral with a federal MCL. Trace elements usually include: cadmium, chromium, barium, beryllium, copper, lead, selenium, mercury, aluminum and silver. Major minerals dissolve readily in water and become concentrated in agricultural runoff and wastewater treatment plant discharges, and through evaporation of seawater and freshwater bodies. Sulfates and chlorides are regulated with secondary standards because of aesthetic considerations, due to the cathartic effect on
humans and the salty taste imparted to water. Fluoride is regulated because too high a level may cause mottled teeth enamel and osteosclerosis.

Trace elements in the minerals group with MCLs include silver, mercury, arsenic, and selenium. Trace elements can damage living organisms at low concentrations and tend to accumulate in the food chain. Trace elements have a wide variety of uses, including mercury in paints and batteries and cadmium in electroplating. Selenium, although an essential trace element in animal diets, is toxic at high concentrations.

Lead is a trace element that the US Environmental Protection Agency (USEPA) has determined to be a health concern at certain levels of exposure, especially for children and pregnant women. While lead-based paint is the major source of lead in the environment, lead can also come from the corrosion of household plumbing that contains lead pipes or copper pipes joined by lead solder. State and federal laws now require that only lead-free solder and other lead-free material be used when building or repairing plumbing systems.

Chromium is a naturally occurring element, the eleventh most common in the earth’s crust. Chromium is also used in many industrial processes, including electroplating, wood treatment, paints, and cooling tower treatment for corrosion control. The two most common species of chromium are chromium III, an essential dietary nutrient, and chromium VI, which can be toxic. According to USEPA, background levels of chromium in US waters average 1 ppb, and drinking water averages 0.1 to 35 ppb. A USEPA survey of more than 3,800 US water taps found average chromium levels of 0.4 to 8 ppb, with varying amounts of chromium present. USEPA has established an MCL of 100 ppb for total chromium. Although chromium VI is a human carcinogen when inhaled, scientific consensus has not been reached on health effects from ingestion.

The subject of recent regulatory focus, arsenic is a naturally occurring element that is present in both groundwater and surface water. It is the twentieth most common element in the earth’s crust (at average concentrations ranging from 1.5 to 5.0 mg/kg), and the twelfth most common element in the human body. Arsenic can be naturally introduced to groundwater and surface water through erosion, dissolution, and weathering processes. Anthropogenic sources of arsenic include lumber, agricultural practices, and general industry. Although concentrations of regulatory concern may be found in surface waters, arsenic is generally considered to be a groundwater issue. The toxicity of arsenic depends on its chemical form and the route and duration of exposure. Arsenic can produce both acute and chronic noncancerous effects and is considered a carcinogen. Amid widespread controversy, USEPA promulgated a new, lower MCL of 10 µg/L in 2001 with compliance mandated by January 2006.

Radionuclides. Radionuclides are elements that spontaneously undergo radioactive decay and release energy in the process. Radionuclides include both man-made and naturally occurring isotopes. Several MCLs exist for radionuclides. For example, stron-tium-90 is a man-made radioactive isotope derived from fission products of nuclear reactor fuels and is present in fallout from nuclear bombs. Strontium-90 has a variety of uses, including industrial thickness gauges, static charge elimination, eye disease treatments, and cigarette density control. Uranium, a naturally occurring radioactive element, is used in nuclear reactors and in the production of nuclear weapons.

Radon-222 (radon) is a radioactive element generated naturally as a gas in the earth that dissolves in groundwater. It volatilizes during showers, bathing, and other activities, such as washing clothes. Radon spontaneously decays to radioactive daughter products, and, in the process, changes from a gas to an ultrafine solid. Radon can be inhaled as well as ingested. Several studies have found a direct link between radon and human lung cancer. The USEPA has recently proposed a draft MCL of 300 pico-Curies per liter (pCi/L).
Organic Groups

Volatile organic chemicals (VOCs). VOCs have had widespread commercial and industrial use over the past 30 years. Industrial parts-cleaning and dry cleaning operations are the top two users of VOCs, followed by manufacturers of chemical intermediates, electronics, pharmaceuticals, and textiles. Facilities using VOCs range from small dry cleaners to major aerospace and defense industries. Common sources of VOC releases include drains, pipelines and discharges diverted to soil or aquifers, and leaking underground storage tanks (LUST). VOC disposal and subsequent movement through landfills can increase the mobility of other toxic chemicals, all of which are ultimately reflected in the leachate contamination of groundwater.

Common solvent usage has included
- trichloroethylene (TCE) for industrial parts-cleaning
- tetrachloroethylene (PCE) for dry cleaning
- carbon tetrachloride (CCl₄), formerly used for dry cleaning and fire extinguishers
- 1,2-dichloroethane (DCA) in soaps and organic synthesis
- 1,1,2,2,-tetrachlorethane for paint removers and in bleach manufacturing

The physical properties and unreactive nature of VOCs that make them so useful also helps make them persistent and mobile in groundwater. Their general toxicity to living organisms makes some VOCs resistant to biodegradation in the subsurface and a health issue for municipal water supplies (Montgomery 1996).

Methyl tertiary butyl ether (MTBE) is a fuel additive first introduced in the 1970s as an anti-knock compound when lead was phased out of gasoline. In the 1990s it was added to reformulated gasoline as an oxygenate to reduce smog production. MTBE has been detected in rain, stormwater runoff, surface reservoirs, rivers, and groundwater. MTBE is highly soluble in water and does not readily degrade and is mobile and persistent in groundwater.

Currently, the USEPA classifies MTBE as a possible human carcinogen and has set a draft health advisory level of 70 µg/L. Additional human health effects studies are needed. However, MTBE can cause taste and odor problems at concentrations at approximately one-half this draft standard. Because it has a lower volatility, MTBE will likely be expensive to remove. Sources of MTBE in groundwater include leaking underground and aboveground fuel tanks, pipelines and associated booster stations, refineries, and spills. Additional sources that may impact groundwater resources include surface water recreational activities using 2-cycle engines.

Pesticides. Pesticides are substances used to destroy or inhibit the action of plants or animal pests, and include insecticides, herbicides, rodenticides, and nematocides. They are associated with irrigated agriculture, dairy, and livestock activities. Virtually all are toxic to humans to some degree and they vary in biodegradability. Table 8-3 lists some of the regulated pesticides that have been detected in groundwater. (Anderson; USEPA 1990).

Nitrosamines (NDMA). Nitrosamines are an emerging contaminant of concern throughout North America, and have been found in polluted air and water (Bolton 2000). The major concern has been the occurrence of N-Nitrosodimethylamine (NDMA) in potable water systems, first noted in California in 1998, but found throughout the United States and Canada at levels significantly higher than in the past (Yoo et al. 2000). Industrial contamination was initially investigated as an NDMA source in Canada, leading to investigation of potential formation of NDMA in the drinking water treatment process. NDMA is also being found in groundwaters, and current research is expanding to include other nitrosamines (Andrews and Taguchi 2000).
NDMA is not currently regulated under USEPA drinking water rules. NDMA is classified as a Class I carcinogen in Canada, and a Class B2 probable human carcinogen in the United States. The compound has been known to cause carcinomas and tumors, primarily in the liver, kidney, and lungs (Andrews and Taguchi 2000). Because of NDMA’s carcinogenicity, the Ontario Drinking Water Objective has been set at 9 ng/L, based on a 5×10^{-6} risk factor estimated by the USEPA (Andrews and Taguchi 2000). In California, the original action level was for NDMA at 2 ng/L based on a 10^{-6} lifetime cancer risk developed by the state, similar to the federal MCLs (CDHS 2000). However, the State action level was changed to 20 ng/L to allow utilities to study the problem because many sites sampled exceeded the 2 ng/L action level (Davis et al., 2000). The target set by USEPA for an estimated 10^{-6} risk level is 0.7 ng/L (CDHS 2000). This risk was assessed assuming an average ingestion of two liters per day for 70 years (Kruger 2000).

Pharmaceutically Active Substances. It has been estimated that 70 percent of pharmaceuticals consumed pass through the body unchanged. Further, because concentrations of these substances are typically less than 1 mg/L, the microorganisms in wastewater treatment facilities are not induced to metabolize these substances as an energy source. As a result, current research indicates that many of these substances survive the biodegradation process and are discharged into receiving waters. Those that are altered can revert to their original form in the environment (Daughton and Ternes 1999). Recent research also indicates the presence of chemicals in water and wastewater that may disrupt the endocrine system of many species, including humans. Endocrine chemicals are used by organisms to regulate important metabolic activities, such as ion balance, reproduction, basal metabolism, and fight or flight responses through changes in hormones secreted by the thyroid, parathyroid, pituitary, adrenal, sex, and other glands. Because endocrine systems are interconnected, effects on one will affect others as well. Chemicals, whether derived from pharmaceuticals, industrial emissions, or natural sources that interfere with endocrine systems of humans and wildlife are termed endocrine disruptors, and those that elicit a pharmaceutical response in humans are termed pharmaceutically active substances (PASs). Research has identified more than 60 PASs that impact the endocrine system of animals and humans in ng/L or lower concentrations in the ecosystem.
The first regulations requiring eco-toxicity testing for the registration of pharmaceuticals were established in Germany in 1995. As a result, most research involving the identification and characterization of PASs in wastewater effluents and receiving waters has occurred in Germany. In the United States, the 1996 Safe Drinking Water Act Amendments and the Food Quality Protection Act of 1996 mandate comprehensive screening for estrogenic and anti-estrogenic chemicals. Research initiatives by the American Water Works Association Research Foundation and the Water Environment Federation Research Foundation address the problem.

Disruptive effects of endocrine disruptors in the environment have been observed. While both natural and synthetic chemicals may have disrupting effects, most observations involve species feminization and have been attributed to estrogenic compounds found in wastewater effluents (Lutz 1999). The reverse also occasionally occurs, as in North Florida, where wastewater effluent from a paper mill is suspected in the masculinization of fish through the development of androgenic compounds in the process (Raloff 2001). In both cases, the sex change effect results in radically reduced resident fish populations, sexually shifted remaining populations, and potential loss of sustainability of the resident population. Also in Florida, alligator populations have been found to have greatly reduced fertility, traced to a feminization and lack of development of reproductive organs in the male (Guillette et al. 1994). Nationally, many species have reportedly been affected (Colburn et al. 1997).

Until recently, the problem of PASs in the environment was not noticed because of the low concentrations and difficulty in tracing the compounds. Tracing drug residues is problematic because many potential endocrine disrupting chemicals have little in common structurally or in terms of chemical properties (Depledge 1999.) In addition, lists of active ingredients in pharmaceutical products are not often made available because of patent limitations, hindering the development of spectral signatures needed for analysis by gas chromatography-mass spectroscopy (Daughton and Ternes 1999). Furthermore, current effluent toxicity screening tests are not designed to detect endocrine disrupting and other effects of PASs, the effects of chronic exposure, or prenatal effects realized in offspring.

Limited research has been conducted on the eco-toxicity of PASs, and subtle changes in the behavior and development of aquatic organisms may be the greatest concern. Pharmaceutically active substances and their ecological effects can be categorized (Daughton and Ternes 1999; Hirsch et al. 1999; Raloff 2001; Buser 1998; Ternes 1998) as shown in Table 8-4.

Secondary wastewater treatment plants are designed principally to remove the oxygen demand of influent wastewater, through the degradative action of a series of resident microorganisms. Wastewater facilities that have received PASs in the influent for years may support resident organisms that have adapted to the metabolization of PASs. However, marketed pharmaceuticals evolve continuously, and therefore may escape treatment in typical biological reactors. In addition, PAS concentrations may be below that needed to initiate the enzyme affinity of the organisms (Daughton and Ternes 1999).
Sources of Chemical Contamination

Potential contaminants are generated by virtually all of society’s industrial, agricultural, urban, and rural activities. The principal sources of contaminating substances are shown in Table 8-5.

Contaminants may enter groundwater reservoirs by intent and design, such as deliberate placement in the subsurface through a waste-injection well. Or, contaminants may enter a groundwater system inadvertently, for example, by leakage from a ruptured pipeline, as leachate from an inadequately sealed landfill, or as a result of agricultural fertilizer application.

Table 8-5 Major sources of groundwater contamination

<table>
<thead>
<tr>
<th>Point Sources</th>
<th>Non-Point Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landfills</td>
<td>Agriculture</td>
</tr>
<tr>
<td>Superfund-type Sites</td>
<td>Dairies & Feedlots</td>
</tr>
<tr>
<td>Leaking Underground Storage Tanks (LUST)</td>
<td>Seawater Intrusion</td>
</tr>
<tr>
<td>Wastewater Plants</td>
<td>Urban Run-off</td>
</tr>
<tr>
<td>Oil Production & Refining Facilities</td>
<td>Oil, Sewer, and Other Pipeline Networks</td>
</tr>
<tr>
<td>Industrial & Manufacturing Facilities</td>
<td>Oilfield Brine Injection</td>
</tr>
<tr>
<td>Septic Tanks</td>
<td>Seawater Intrusion</td>
</tr>
<tr>
<td>Spills & Accidents</td>
<td>Acid-Mine Drainage</td>
</tr>
</tbody>
</table>
Figure 8-2 illustrates the downward movement of a contaminant from a land surface source (in this example, a waste lagoon), through the zone of aeration (the zone of rock and soil above the water table, it is unsaturated with water), and then into the aquifer. As illustrated, the contaminating liquid migrates downward and laterally into the aquifer. The recharge mound built up beneath the source of the contaminant may propel some of the liquid in an upward direction (to the left in the illustration) for relatively short distances, but the dominant direction of movement for contaminant liquids with density similar to that of the groundwater is downward in the direction of general groundwater flow, indicated by the direction of slope of the old water table (to the right in the illustration).

The relative densities of incoming fluids and of the receiving water in the aquifer influence the pattern of contaminant movement. High-density organics, such as chloroform, dichloroethane and tetrachloroethylene, tend to “sink” to the lower part of the aquifer and are commonly called dense nonaqueous phase liquids (D-NAPLS). Comparatively, fluids that are less dense than water, such as gasoline and oil, tend to “float” on the groundwater and are called L-NAPLS.

REFERENCES

USEPA. Ninth Report on Carcinogens, date unknown.

www.dhs.ca.gov/ps/ddwem/chemicals/NDMA/. (Californian Department of Health Services Web Site on NDMA as of September 7, 2000.)

Chapter 9

Groundwater Treatment

This chapter provides an overview of common treatment techniques applied to groundwater including aeration, oxidation, softening and ion exchange, filtration, adsorption and absorption, corrosion control, disinfection, and fluoridation. When used in combination to achieve treatment goals, the interactions and effects of unit processes must be carefully considered.

AERATION

Aeration mixes water with air to transfer gas from the water to the air. Aeration is often employed to

- remove objectionable dissolved gases such as hydrogen sulfide and carbon dioxide
- remove certain volatile organic compounds
- oxidize reduced constituents in the water such as iron and manganese (see oxidation)

Aeration of water with significant amounts of hydrogen sulfide can create odor problems and a highly corrosive environment for plants and equipment. The introduction of air into water containing microbiological populations can increase biological activity, potentially affecting downstream water quality. Aeration should not precede membrane filtration.

Methods of Aeration

The methods commonly used to mix water and air are presented in the following text.

Natural draft aeration. Natural draft aeration uses a device open to the atmosphere. Water enters the top, falls in or around trays, and is collected at the bottom. The turbulence and mixing of the cascading water provides gas transfer.
Forced or induced draft aeration. Forced or induced draft aeration uses a device similar to the natural draft aeration but is equipped with a blower. The blower forces air from the bottom of the aerator out the top. This counter-current effect provides a greater level of gas transfer than the natural draft aerator and a higher “air to water ratio.”

Packed-tower aeration. The packed-tower aerator, also known as an air stripper, uses a column filled with a packing material typically made of plastic or ceramic. Like the other devices, the water is distributed at the top and allowed to flow to the bottom for collection. At the same time, a counter-current movement of air is provided. Because of its design, the packed-tower aerator can achieve high levels of efficient mixing and transfer and is typically used for treating volatile organic compounds (VOCs). In many cases, the off-gas containing the VOCs is captured for further treatment.

Diffused aeration. Diffused aeration mixes air with water in an open basin or tank. Air headers at the bottom of the basins produce a stream of upward flowing air bubbles for direct gas transfer and mixing. Mechanical agitation and mixing is also used.

oxidation

In oxidation, one or more reactants lose or donate electrons (oxidize) and one or more reactants are reduced (gain or accept electrons). Oxidation reactions are very common for the treatment and disinfection of groundwater.

For example, soluble iron (Fe²⁺) and manganese (Mn²⁺) generally oxidize to ferric (Fe³⁺) and manganic (Mn⁴⁺) forms, which are insoluble and precipitate. Oxidation can remove color, tastes, and odors to varying degrees. Common chemical additives capable of providing oxidation include ozone (O₃), permanganate (MnO₄⁻) and chlorine (Cl⁻). Although aeration can provide a level of oxidation, its effect is weak compared with direct application of the chemical oxidants.

Chlorine and Chlorine Compounds

Aqueous chlorine is one of the most effective chemical oxidants for use in manganese oxidation, carbon removal, and control of taste and odors. Unfortunately, free residual chlorine may combine with organic compounds to create trihalomethanes and other by-products. Chlorine can be used for oxidation.

Potassium Permanganate

Potassium permanganate (KMnO₄) can oxidize most organic and many inorganic pollutants in water. Thermodynamic reactions form manganese dioxide (MnO₂), lending the remaining oxygen pair for use to oxidize iron and other contaminants.

Potassium permanganate is used to oxidate iron, manganese, cyanide, and phenols. It is used for taste and odor control, and for color removal. Often, potassium permanganate is injected into the water stream before a contact or oxidation tank. The tank provides sufficient detention time for the thermodynamic reactions to occur. The potassium permanganate dosage must be carefully determined and controlled, or the treated water will contain an excess of manganese and be pinkish-purple in color.
Ozone

In aqueous systems, ozone (O\textsubscript{3}) reacts directly with contaminants, or indirectly, when ozone decomposes to form the hydroxyl radical. The indirect process is advanced oxidation.

Treatment applications. Ozone is a powerful oxidant often used as pretreatment or in an intermediate treatment process. Ozone is useful for treating taste, odor, and color compounds because the causative substances in natural waters contain ozone-sensitive functional groups or unsaturated bonds. The organic compounds may not be completely oxidized and may change in molecular structure, often requiring further treatment. Ozonation by-products are discussed in the disinfection section of this chapter.

Ozone oxidizes synthetic organic chemicals (SOCs), an application favoring the high selectivity of molecular ozone. Ozone is most useful as an oxidant of phenolic pollutants and some pesticides with vulnerable functional groups. Advanced oxidative processes may be necessary to oxidize other SOCs.

Advanced Oxidation

Advanced oxidation processes generate an oxidizing agent called the hydroxyl (OH–) radical, which is extremely reactive because it contains a single, unpaired electron. Unlike molecular ozone, the hydroxyl radical is not selective as an oxidizing agent. Advanced oxidation most commonly involves the use of three types of processes: hydrogen peroxide and ozone, UV light and ozone, and UV light and hydrogen peroxide. The UV light or hydrogen peroxide acts to encourage ozone decomposition to the hydroxyl radical in quantities sufficient to treat otherwise ozone-resistant contaminants.

Advanced oxidation has been used in treatment of taste and odor compounds, most commonly found in the middle of a treatment train. Typically, the ozone dosage required is low. Laboratory and pilot plant studies have been conducted for the treatment of SOCs. Molecules that are refractory to molecular ozone, such as halogenated alkanes and alkenes, and some aromatics, such as benzenes, are reactive with the OH– radical. Pilot-scale work indicates that advanced oxidation may be useful in removing trihalomethane THM precursors that are resistant to molecular ozone, such as certain ketones. As is the case with ozone, formation of bromate and AOCs are a concern with advanced oxidation.

SOFTENING AND ION EXCHANGE

Hardness in drinking water increases the amount of soap needed to produce a foam or lather and causes scale in hot water pipes, heaters, and boilers. Hardness is caused by a high concentration of divalent metallic cations, mostly calcium (Ca2+) and magnesium (Mg2+), but also iron (Fe2+), manganese (Mn2+), and strontium (Sr2+). Treatment for softening and iron and manganese removal are related.

Hardness in drinking water is derived largely from contact with soil and rock formations. In general, hard waters originate in areas where the topsoil is thick and limestone formations are present. In other geologic formations, such as granitic-based materials, the groundwater contains less calcium and magnesium but may still contain too much iron and manganese. Although not considered to be health hazards, iron and manganese can impart color to water and can stain laundry and plumbing fixtures (generating “red water” complaints). Iron and manganese can precipitate in pipes and fittings and can encourage bacterial slime growths in hot water pipes, heaters, and boilers.
Softening Treatment

Softening of hard water is usually accomplished by one of the following methods:

- Chemical precipitation with lime alone or lime and soda ash (lime–soda ash process)
- Sodium-cycle ion-exchange process
- Membrane processes

Membrane processes, while used for softening, are presented in the filtration discussion in this chapter.

Lime–soda ash process. The lime–soda ash process can be used at ambient or elevated temperatures. Cold lime softening is one of the oldest methods of water treatment. Lime (calcium hydroxide) is added to the water or lime in combination with soda ash (sodium carbonate). The hot process is used primarily by industry for the treatment of medium-pressure boiler feedwater. The choice of treatment depends on the composition of the water to be treated and the degree of hardness reduction desired.

 Temperature, retention time, and contact of previously formed precipitates with influent raw water and treatment chemicals will influence chemical efficiency and the finished water quality of the cold lime–soda ash softening process. A cold softener has the capability to produce calcium at 35 mg/L as CaCO₃, total alkalinity at 35 mg/L as CaCO₃ and to remove carbon dioxide.

 The treated discharge from a lime or lime–soda ash process softener (either hot or cold) is saturated or supersaturated with calcium carbonate, making it scale-forming. Carbon dioxide (recarbonation) can stabilize the effluent. Acid is also used to convert carbonates to bicarbonates and render the water stable.

Ion-exchange process. Ion exchange is a chemical process that reversibly exchanges undesirable ions with alternative ions. In the sodium-cycle ion-exchange process, calcium and magnesium are exchanged for very soluble sodium ions. Historically, this softening process was called sodium zeolite softening, because natural (e.g., greensand or glauconite) or synthetic zeolite were used as ion exchange materials.

 Although natural zeolites are still in use, modern ion-exchange materials consist of a matrix or hydrocarbon network such as polystyrene, which is copolymerized with divinyl benzene (DVB). The matrix is converted to a strong-acid cation exchanger or to a strong-base anion exchanger, depending on the type of ionizable groups attached to the network. In softening by ion exchange, only strong-acid, cation-exchange resins operating in the sodium cycle are used as exchange material.

 The ion-exchange softening process consists of passing the hard water, usually under pressure, through a tank containing the cation-exchange resin in the sodium form. In the tank, calcium and magnesium ions are replaced with the more soluble sodium ions, as are other dissolved ions such as iron, manganese, barium, strontium, and zinc. Ion exchange is also applied to removal of anions such as nitrates. In this case, the anions replace OH⁻ ions. All ion exchange filters must be backwashed and regenerated on a regular basis.

Iron and Manganese Treatment Methods

Ion exchange. Greensand continues to be a popular ion exchange media for the removal of iron and manganese. The process by which greensand removes these metals has been described both as ion exchange and adsorption. Generally, permanganate is added as a pretreatment to oxidize the metals and also to regenerate the greensand.
Chlorine is also used as a pretreatment, particularly if bacterial fouling of the filter media is a problem.

Oxidation and filtration. If both the iron and manganese can be fully oxidized, the precipitates can be removed by filtration. However, manganese is more difficult to oxidize than iron, and complete oxidation requires adequate oxidation contact time. A typical treatment system includes increasing the pH prior to filtration to reduce the solubility of the metals.

Sequestering. Sequestering is a strategy for controlling iron and manganese by maintaining the metals in solution. Instead of removal, the metals are made complex by reacting with a sequestering agent to prevent their oxidation and precipitation. Phosphate or silicate compounds are often used for this purpose. The success of sequestering is site specific and is generally limited to waters with a total concentration of iron and manganese below 1 mg/L.

Filtration

Filtration has traditionally been used to remove turbidity from surface water supplies. The following paragraphs discuss three common filtration methods often used in groundwater treatment. They are granular filtration, membrane filtration, and cake filters.

Granular Filtration

Granular filters remove solids from water using fine, porous media such as sand, anthracite coal, magnetite, garnet sand, and coconut shells. Granular filtration is often preceded by rapid mix, coagulation, and flocculation to create suspended and colloidal particles that can be filtered. Groundwater systems may use pressure filters to achieve greater economic benefits over the open, gravity designs typically employed for treatment of surface waters. Granular filters must be backwashed regularly.

Membrane Filtration

Separation processes based on the use of selective membranes are becoming increasingly more important for the treatment of groundwater because of their ability to remove particles as small as metal ions without coagulation. Four major membrane processes are used for drinking water treatment: microfiltration, ultrafiltration, nano-filtration, and reverse osmosis. Figure 9-1 illustrates the particle size ranges for these processes, and Figure 9-2 illustrates the process. Pressurized raw water is fed to the membrane filters to produce a filtered water stream called the “permeate” and a wastewater stream called the “concentrate,” which contains the concentrated contaminants rejected by the membrane.

Membrane filtration systems are used in desalination, softening, color removal, organics removal, and treating groundwater considered to be under the influence of surface water. Membranes are subject to fouling by iron, manganese, and microbiological activity. When present, these problems often require pretreatment, filter element backwashing, and periodic cleaning of the filter elements with a mild acid solution.

Cake Filters

Cake filters, also known as pre-coat filters, deposit particles that become incorporated in the filter media, which increases in depth. The best known type is diatomaceous earth (DE) filters. DE is a natural occurring material consisting of the microscopic remnants of the discarded frustules of diatoms.
Figure 9-1 Membrane and conventional process overview

<table>
<thead>
<tr>
<th>Approximate Molecular Weight</th>
<th>Ionic</th>
<th>Molecular</th>
<th>Macromolecular</th>
<th>Microparticle</th>
<th>Macroparticle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>200</td>
<td>1,000</td>
<td>10,000</td>
<td>20,000</td>
</tr>
<tr>
<td></td>
<td>100,000</td>
<td>500,000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 9-2 Typical reverse osmosis or nanofiltration membrane system
DE filters may be closed, pressure types, or open, suction types. In either case, a septum (a porous material) is “precoated” with a layer of DE at the beginning of a filter run. During the filter run, a “body feed” of DE is continuously fed with the influent water to build up the filter bed or cake. At the end of a filter run, the filter is back-washed and the filter cake with the imbedded particles is sloughed off and discharged to waste.

** ADSORPTION AND ABSORPTION

Adsorption is the collection of a substance onto the surface of another. This process is distinguished from absorption, which is the penetration of the substance into the solid. Both processes remove soluble contaminants; when occurring together, the combined process is referred to as “sorption.” The most commonly used media is activated carbon. Media have a limited adsorption and absorption capacity. When exhausted, contaminants will breakthrough and possibly cause desorption (leaching of contaminants). A major operating cost is the periodic replacement of the media before its treatment capacity is reached.

** Activated Carbon

Removal of impurities by activated carbon involves both absorption and adsorption; however, in practice the process is referred to as adsorption. Activated carbon is made from the carbonization or heating of various materials such as wood, sawdust, fruit pits and coconut shells, coal, and petroleum-based residues. The solids are carbonized and then activated using hot air or steam-producing pores, which increases the effective surface area per unit mass of carbon. Powdered activated carbon (PAC) and granular activated carbon (GAC) are used in drinking water treatment.

** Granular Activated Carbon

Granular activated carbon (GAC) is used in fixed beds either in pressure or open, gravity filters. GAC is often used to treat taste, odor, and color problems and is considered by USEPA to be the best available technology (BAT) for removal of many regulated VOCs and SOCs. GAC is also used for removal of radon-222 and disinfection by-products. Potential problems include breakthrough, desorption of contaminants, the effects of backwashing on GAC loss, and bacterial growth on the filter media. Spent GAC may be regenerated and reactivated.

** Powdered Activated Carbon

Powdered activated carbon (PAC) differs from GAC by its smaller particle size and application. PAC is added as a dry powder or slurry prior to filtration. PAC is added only when needed, often to treat sporadic or seasonal taste and odor problems.

** CORROSION CONTROL

Corrosion is the deterioration of metallic structures in contact with water, usually with loss of metal to solution. External pipeline corrosion is important; however, this discussion focuses on internal pipeline corrosion. Internal corrosion can result from metabolic (microbial) activity, chemical dissolution, or physical abrasion by excessive fluid velocities. Corrosion can affect both the structural capacity of the pipe and the quality of the water.
Corrosion typically causes rusting, pitting, and tuberculation of iron, copper, and lead water pipes, valves, and appurtenances. Metal is leached into the water. The severity of the problem depends on the chemical corrosivity of the water, biological activity, types of pipe materials, and other factors.

Water is considered chemically corrosive if

- pH, alkalinity, hardness, silicates, and phosphates are relatively low
- dissolved oxygen, chlorine residual, total dissolved solids (or specific conductance), chlorides, sulfates, hydrogen sulfide, and carbon dioxide are relatively high

Several indexes express the degree of corrosivity of water. The Langelier Saturation Index (LSI) is based on the effect of pH on the solubility of calcium carbonate. A positive LSI indicates a noncorrosive water (i.e., one that would precipitate a protection coating of calcium carbonate on pipes); a negative LSI indicates a corrosive water (i.e., one that would dissolve calcium carbonate). The calculation of the LSI is based on the alkalinity, calcium, total dissolved solids, pH, and temperature of the water.

Treatment

Strategies for reducing corrosivity generally include increasing the pH, increasing the alkalinity, or adding a corrosion inhibitor. Common chemical additives for increasing the pH and alkalinity include lime, soda ash, sodium bicarbonate, caustic soda, potassium hydroxide. Common corrosion inhibitors include silicates, orthophosphate, polyphosphate, and phosphate blends, which react with the pipe material to form a less soluble metal coating. This action is known as passivation. When adding silicates or phosphates, an adequate chlorine residual must be maintained because these compounds are nutrients that can stimulate microbiological activity and produce taste and odor complaints.

DISINFECTION

Disinfection is defined as the destruction of pathogenic microorganisms (as opposed to sterilization in which all living organisms are destroyed). Bacteria, viruses, protozoa, amoebic cysts, algae, and helminth (worms) are targeted organisms. Disinfection is most commonly achieved using chemical oxidizing agents such as chlorine, chlorine dioxide, chloramines, iodine, or ozone. Other methods include ultraviolet radiation and maintenance of an elevated pH.

Disinfection effectiveness depends on the sensitivity of targeted microorganisms, disinfection concentration, contact time, and other water quality characteristics. Bacteria are the most sensitive to disinfection, followed by viruses, protozoan spores, and bacteria spores. Some enteric viruses that lack sensitive enzyme systems are very resistant.

Traditionally, the presence of coliform bacteria has been used as an indicator of viruses and other microorganisms. However, this practice is under review following outbreaks of some enteric viruses and the protozoa Cryptosporidium without the presence of coliforms.

Chlorine

Chlorine is the most widely used disinfectant because it is effective at low concentrations, relatively inexpensive, and can form a residual. Chlorine can be applied as a gas or as hypochlorite. Hypochlorite salts are available in dry (calcium hypochlorite) or liquid (sodium hypochlorite) form. When mixed with water, chlorine forms hypochlorous
acid (HOCl) and hydrochloric acid (HCl). The HOCl further disassociates to yield the hypochlorite ion (OCl⁻). Compared with OCl⁻, HOCl is more effective. Formation of the hypochlorite ion from HOCl is pH dependent. At pH 7, 80 percent of the chlorine exists as HOCl; at pH 8, 80 percent of the chlorine exists as the less effective OCl⁻. Effective chlorination requires careful attention to system pH.

Chlorine is a very reactive oxidizing agent and combines with ammonia, sulfites, metals, and organic material. Chlorine demand is the amount of chlorine that is used up in these extraneous reactions before it becomes free available chlorine for use as a disinfectant.

Chlorination reactions may produce by-products, including trihalomethanes (THMs) and organic halides in waters that contain humics or other natural organic precursors. If by-product formation exceeds regulated limits, options include precursor removal or the use of alternative disinfectants.

Chloramines

Chloramines are compounds formed when chlorine reacts with ammonia which may be naturally present or intentionally added. Chloramines are less effective than HOCl and OCl⁻, and less effective against viruses than bacteria. The benefits of chloramine disinfection are a lower generation of chlorination by-products and a greater residual stability in the distribution system.

Chlorine Dioxide

Chlorine dioxide (ClO₂) has not been widely used as a disinfectant. Like chloramines, chlorine dioxide is not as effective a disinfectant as chlorine. However, chlorine dioxide does not react with ammonia or nitrogenous compounds nor does it react with precursors to produce trihalomethanes. Chlorine dioxide does produce two by-products, chlorite (ClO₂⁻) and chlorate (ClO₃⁻), which are candidates for future regulation. Chlorine dioxide has also been associated with odor generation in some homes with new carpeting.

Ozone

Most bacteria, including coliforms, are highly susceptible to ozone. Exceptions are the relatively resistant gram positive bacillae and mycobacterium. Viruses are generally more resistant than bacteria. Ozone is considered particularly effective for Giardia lamblia and Cryptosporidium cysts, which are relatively resistant to chlorine. Ozone does not produce a disinfection residual in the distribution system as does chlorine. Escherichia coli are so sensitive to ozone relative to other organisms that it is not a good indicator of the quality of water disinfected by ozone.

Ozone can oxidize large, organic macropollutants into smaller, more biodegradable compounds, producing an increased level of assimilable organic compounds (AOCs). AOCs can stimulate distribution system biological activity, including increased biofilm production. Ozonation produces bromate (a regulated substance) in waters with bromide ions. The ions react with natural organic matter to produce tribromomethane and bromoacetic acids.

FLUORIDATION

A fluoride concentration of up to 1 mg/L in drinking water is generally considered to reduce dental decay. Some groundwaters contain naturally high levels of fluoride
and, in some cases, fluoride must be reduced to acceptable levels by ion exchange with activated alumina, lime softening, or coagulation.

Hydrofluosilicic acid (H_2SiF_6) is often used as an additive because it is purchased as a bulk liquid. Dry additives include sodium fluoride (NaF), calcium fluoride (CaF_2), ammonium silicofluoride (NH_4SiF_6), and sodium silicofluoride (Na_2SiF_6). The dry additives require a dry feeder (either gravimetric or volumetric) and saturation tank or must be mixed by hand.

REFERENCES

Chapter 10

Record Keeping

As part of effective wellfield management, the proper operation of a groundwater system includes the gathering, compiling, and recording of a wide variety of data. Pumping data from production wells must be collected to compile an operating history of the wells. Such data is used to detect a loss of production efficiency and possibly the cause of a loss. The data is also used to schedule well maintenance at opportune times to avoid breakdowns. This data can also be used to evaluate the cost of water production and guide improvements to the physical system and to the operating methods.

Capacity declines occur in most water wells primarily due to gradual loss of efficiency within and immediately adjacent to the well screens. The main objective of any record keeping program is to compile information that makes it possible to compare actual operating characteristics and conditions with original and calculated (theoretical) design performances. This historic data can also be helpful in assessing the cause of problems with the well and pumping system, and in directing design modifications for future wells to improve efficiencies and production capability.

The forms used for record keeping are not critically important. Records must be collected, regardless of the form that is used. The date and time must be kept for each set of measurements. Other information that should be recorded is presented in this chapter. The information recommended for collection includes both design and construction of data and operational data.

DESIGN AND CONSTRUCTION RECORDS

The following outlines data to be included in the construction specifications or to be defined by the hydrogeologist during construction:

- Well diameter
- Proposed total depth
• Position of the screens (or portion of the open hole if constructed in rock)
• Method of construction and materials to be used for the screen and casing
• Pump design

The following should be obtained after the drilling process is complete and the casing and well screens have been put in place:

• Water-quality analyses
• Detailed individual well (geologic) logs
• Static (non-pumping) water levels in the aquifer
• Design pump discharge pressures

When the production well has been constructed, “as-built” records of the well should be recorded. These records should include

• the method of construction used to drill the well
• the driller's log of the materials encountered during drilling
• geophysical logs
• diameters (and materials of construction) of well casing and screens
• slot sizes of the screen
• the depths (settings) of the casing and screen
• surveyed location of completed well
• surveyed elevation of water level measurement point
• the total depth of the well

PUMP DATA

Pump data should include

• the type (and make) of the pump installed
• the type and horsepower of the motor (driver)
• the pump setting (depth to the pump intake)
• the setting of the air line or other device for measuring the water level in the well
• notation for the point (and reference elevation) used for measurement of the water level
• all information provided by the pump and motor manufacturer, such as capacity and efficiency data

WELL ACCEPTANCE AND PUMPING TEST

A newly constructed well with a new pump should be evaluated as a unit to establish a standard to measure the performance in the future. Data should be collected to determine well losses that relate to well design and construction. Comparative data pertaining to the physical condition of the pump unit should also be collected. Proper study and comparison of such data enable the operator (or consultant) to anticipate
maintenance and repair needs. Of course, after any repair or maintenance work, similar tests should be rerun. This data should include the following:

- Water level measurements made before, during, and after the (drawdown) pumping test
- A record of the pumping rate
- Hydrographs generated during the test
- Any raw data collected (manual or computer generated)
- A copy of the hydrogeologists’s report on the procedures and test results.

MONTHLY PUMPAGE

The total pumpage for each well should be recorded monthly and graphed to illustrate the seasonal and yearly production rates. This data can be used for future projection of water withdrawal rate and to monitor the actual volume of water produced from each well to predict periods between maintenance. This data can usually be recorded from a totalizer on flowmeters installed in the discharge piping for each well.

WATER LEVELS

Records of water levels in the well during periods of non-use (static) and during pumping should be recorded. The static levels can identify changes in the amount of water that may be available in the aquifer with time. The levels also provide a baseline for determining the amount of drawdown. Measurements of water level in observation and monitoring wells can also be used to evaluate static water levels in the aquifer at any given point. Monitoring pumping levels for any given well will illustrate the seasonal variations of pumping rates, river stage, water temperatures (well water and river), and drawdown with time. Trends in the pumping level with time can reflect losses in efficiency in the well over time.

WATER TEMPERATURE

The groundwater temperature should be recorded and plotted to obtain base data for determining future expectations of groundwater temperature. As the temperature of the groundwater varies, the capacity of the well fluctuates due to the viscosity of the water. Viscosity offers resistance to flow and is expressed as a coefficient of dynamic viscosity, or the force required to move a unit area a unit distance. In areas where recharge to the aquifer may come from infiltration of surface water, the temperature of the adjacent surface water body should also be recorded. The temperature records are used to evaluate infiltration and recharge, and where groundwater is under the influence of surface water.

SPECIFIC CAPACITY

The apparent specific capacity or ratio of the yield of each well to its drawdown, expressed in gallons per minute per foot of drawdown (gpm/ft), is used to plot the operational trend of each well. The apparent specific capacity for a well is determined by dividing the pumping rate (gpm) by the observed drawdown (ft) in the well measured at any specific time. Specific capacity depends not only on the transmissivity of the aquifer but also on well construction factors, such as screen type, well diameter, degree of aquifer penetration, and degree of well development. In general, when a well
is new or new screens have been installed, the specific capacity is expected to fluctuate with pumping rate, river stage, temperature, aquifer water levels, and degree of screen efficiency.

DIFFERENTIAL

The differential between the pumping water level inside the well and the water level in the aquifer outside the well can be measured in any nearby monitoring or observation well. This value can identify changes in drawdown that relate to well production and efficiency or regional water level changes. The differences in water levels should be measured from surveyed elevations and plotted with time. The differentials are impacted by aquifer plugging from particle movement or biological factors and subsidence.

WELL MAINTENANCE

Well maintenance activities should also be recorded. These records should include

- the dates that maintenance was performed
- results of pre- and post-maintenance pumping tests
- methods (and materials) used in the maintenance procedures
- other factors such as the coloration of the pumped water, amounts of sand removed, odors, water quality analyses

This data can be used to predict times when maintenance needs to be performed, identify possible causes of well decline, and plan for annual budgets for wellfield management.

WELL ABANDONMENT

Records of any wells that are abandoned should also be maintained. These data should include

- survey coordinates of the well
- identification of markers or other indications of abandoned well location
- the date the well was taken out of service
- the date the well was properly abandoned
- a description of the methods and materials used to abandon the well
- reasons why the well was taken out of service
- historic performance records of the abandoned well

SUMMARY

If original records have been lost or not kept at all, manufacturers and well drillers, who maintain itemized records, including details for original pumps sold and installed, can be contacted. These records should be collected and filed, or incorporated into a binder system. Copies of those records give indications of the original pumping levels and head conditions. They may also indicate general area changes in water levels. Actual drilling logs may be replaced by running gamma-ray logs in both new and old
wells and then compared to correlate formation compositions. Changes in water quality may be documented in state health agency files and be relevant to well maintenance. “Retroactive” historic data of local aquifer conditions may also be available through records maintained by regulatory agencies.
This page intentionally blank.
Chapter 11

Groundwater Recharge and Storage Programs

Recent investigations have studied the feasibility of using groundwater to protect water resources, recharge wellfields, and store water. These techniques involve injecting treated or treatable water beneath the surface, rather than discharging it. Aquifer storage and recovery uses an aquifer formation as an underground storage tank that can be drawn on during high-demand periods or droughts. In aquifer reclamation, large quantities of high-quality water are injected into a contaminated aquifer. The most promising application of this technology is injection of fresh water into aquifer zones in coastal areas with highly transmissive formations contaminated with saltwater. Artificial aquifer creation and artificial recharge is similar to aquifer storage and recovery and reclamation. Treatable water is injected into an aquifer zone devoid of water, or one with lower quality water that is displaced.

This chapter provides an overview of these groundwater recharge and storage techniques. Case studies illustrate how water suppliers have applied the techniques. First, federal regulations that govern groundwater recharge and storage are introduced.

UNDERGROUND PROTECTION CRITERIA AND STANDARDS

Federal regulations, such as 40 CFR 146, give standards for underground injection projects. The rules were established under the authority of The Safe Drinking Water Act approved in 1974 and amended in 1986 and 1996. The regulations include an extensive set of definitions concerning injection wells. Many states have their own regulations that provide additional requirements to the federal rules.

Class I injection wells are used by generators of hazardous waste, or owners and operators of hazardous waste management facilities. Hazardous wastes are injected beneath the surface but not beneath the lower-most formation used for drinking
Class II wells inject fluids that are brought to the surface in oil and natural gas production. These wells also enhance recovery of oil and natural gas and the storage of hydrocarbons at liquid temperature. Class III wells are used for mineral extraction. Class IV wells inject hazardous radioactive wastewater below the lower-most drinking water zone. Class V wells are all wells that are not included in Class I, II, III, or IV. Class V wells include:

- air conditioning return wells
- cooling water disposal wells
- drainage wells
- dry wells for injection of wastes
- recharge wells for replenishing water
- saltwater intrusion barrier wells
- wells to inject water into freshwater aquifers, sand backfills, and other wells to inject a mixture of water and sand
- septic system wells.

The regulations establish corrective actions for well failures and requirements for mechanical integrity tests to determine that there are no leaks in the casing, tubing, or packer. They also establish that fluid does not enter an underground drinking water source through vertical channels adjacent to the well. The testing methods to achieve these results are included.

Under subparts B, C, D, E, and F the criteria and standards that apply to Class I, II, III, IV and V wells are established. Each of these subparts establishes construction requirements; operating, monitoring, and reporting requirements; and information required in granting well permits. The information includes:

- the proposed operation of the well (such as maximum daily rate of flow, volume of fluids to be injected, and the average injection pressure)
- the source of the water
- the analysis of the characteristics of the injected fluids
- the appropriate geological data
- the construction details of the well

Applicants for a well permit must provide a performance bond or other guarantee that the applicant will close, plug, and abandon the well according to federal regulations.

AQUIFER STORAGE AND RECOVERY

Aquifer storage and recovery (ASR) is used in potable and nonpotable water systems. ASR technology can increase the efficiency of water system operations. During wet or low-demand portions of the year, unused water treatment plant capacity can be used to treat water that is injected into an aquifer. The injected, treated fresh water displaces the native water in the aquifer. Because of the density difference between the
treated freshwater and saline water, a “bubble” of fresh water will form when injected into brackish water sources. While a large mixing area will occur, adequate fresh injected water will keep the bubble available for potable water supply augmentation for some period of time.

When the full treatment plant capacity is required, injection is discontinued. If demand increases beyond plant capacity, fresh water is recovered from the aquifer, disinfected, and blended with treated water. Excess water can be left in storage as an emergency supply. Figure 11-1 illustrates the process.

Effective use of ASR technology can reduce water treatment facility expansions. Considerable expense can be saved by the more efficient overall operation of the treatment facility, especially membrane facilities designed to run 24 hours a day. System pressure will generally be sufficient for injection, and recovery costs are minimal, requiring only minor pumping costs and disinfection.

Nonpotable ASR use has been proposed in some areas. These projects inject surface water, runoff, or water pumped from the surficial aquifer during wet periods. Water quality regulations limit nonpotable ASR uses at this time. Nonpotable water often has to be treated both before and after recovery, but where raw water is of sufficient quality to permit injection without treatment, the utility saves money at the time of injection.

Figure 11-1 Aquifer storage and recovery conceptual diagram for brackish water aquifers
There are more than 50 sites nationwide that have either utilized or investigated the concept of aquifer storage and recovery. Parameters that are important in identifying this recovery percentage potential are

- time
- water quality
- size of the transition zone
- hydraulic conductivity
- dispersion within the aquifer
- buoyancy forces created by the density differentials
- quantity of water injected
- porosity
- absorption and desorption and
- change in the density of water that is stored or injected after the bubble has been formed.

Issues that have not been clarified include

- the definition of success
- long-term storage efficiency
- bubble dynamics

Future ASR projects should focus on defining the long-term usefulness of ASR as a water management tool, answering these questions and verifying the theoretical expectations of the current models, or providing data sufficient to modify same.

Collier County, Fla., is among those that have tested the concept by injecting potable water into the brackish Hawthorn Aquifer zone and withdrawing water up to 200 mg/L chlorides. Six cycles have been completed, indicating that the concept is viable. The retrieved water will only require disinfection before mixing with potable water and pumping into the distribution system (see Figure 11-2).

![Figure 11-2 Collier County ASR project graph showing recovery efficiency improvement for each succeeding cycle](image-url)
Peace River ASR Project

The Peace River Manasota Regional Water Supply Authority provides for the regional public water supply needs of Charlotte, DeSoto, Manatee, and Sarasota Counties in southwest Florida. The Authority owns and operates a 12-mgd regional water supply and treatment facility on the Peace River. This facility serves users in Charlotte County, southern DeSoto County, and one municipality in Sarasota County. The Peace River Manasota Regional Water Supply Authority has successfully operated an ASR system for a number of years.

The Peace River is the largest flowing surface water body in the area: a 2,480-sq mi watershed that measures approximately 105 mi from Charlotte Harbor. Near the intake structure of the Peace River Regional Water Supply Facility (PRRWSF), the river has an annual average flow of 970 mgd. Regulating requirements limit the amount of the river flow that can be diverted to 10 percent, theoretically providing 97 mgd for public water supply.

The Peace River flow is seasonal with wet seasons (typically summer months) and dry seasons (typically winter and spring months). As a result, the Authority’s permit to withdraw from the Peace River prohibits any diversion from the river when the flow is less than 84 mgd. Using the Peace River as a supply source requires adequate water storage during high wet season flows.

Figure 11-3 is a schematic of the existing Peace River water supply and treatment system. Facilities consist of a diversion structure, an off-stream reservoir, a surface water treatment plant, an aquifer storage and recovery (ASR) system, and above-ground storage. The Peace River has no dams, so all seasonal storage must be provided by the off-stream reservoir and the ASR system.

Figure 11-4 is a cross-section of the ASR system. Two operational storage zones are used at the facility. The upper storage zone is identified as the Tampa Limestone, located between 400 and 500 ft below land surface. Only one well penetrates this zone due to its relatively low water-producing ability and the proximity of nearby domestic wells. The major ASR zone is the Suwannee Limestone, located between 600 and 900 ft below ground. The native water quality of this zone is nonpotable, having total dissolved solids (TDS) of approximately 800 mg/L. Eight ASR wells (with yields of approximately 1.0 mgd each) currently are completed and operating in the Suwannee Limestone. An additional ASR storage zone was tested in the Avon Park Limestone, a fractured limestone and dolomite formation beginning approximately 1,300 ft below land surface. The Avon Park Limestone is a high water-producing formation (well yields up to 3.0 mgd) with a TDS of approximately 2,000 mg/L.
The PRRWSF’s ASR wells are operated as needed to store treated drinking water when Peace River flow is available for withdrawal and system demand is less than the treatment capacity. The treated water is recovered from the ASR system when river flow is low and water demands are high. The operations staff monitors the ASR system for injected and recovered flow rates from the wells, cumulative volumes stored, the water quality of the injected water, and water quality of the recovered water. TDS is an overall indicator of potable water quality. Water produced by treating Peace River water is typically 300 mg/L.

Figure 11-5 shows the historical operation of the ASR wells at the facility. Storage cycles are shown as positive values on Figure 11-5 while recovery cycles are shown as negative values. Storage and recovery cycles alternate quite frequently, rather than as long wet season storage cycles followed by long dry season recovery cycles. This operational pattern is a result of characteristics of Peace River flow that result in high flow events of short duration, combined with regulatory restrictions that prohibit diversions of more than 10 percent of the river flow on any day.

Figure 11-6 shows the cumulative volume in storage for the existing ASR system at the PRRWSF. The quantity of water in storage has increased over time; currently over 1.6 billion gallons of treated drinking water is stored among the nine ASR wells. Also apparent on Figure 11-6 are the time periods in which water was withdrawn to meet extended high demand periods. A pattern of building storage volume, even while water demands increase, is typical of many ASR systems. This buildup of storage volume in the early years of a water treatment plant expansion, when water demands are low, allows a delay before additional facility expansions are needed to meet increased demands.

Figure 11-7 shows the depletion of storage and the TDS of water produced from the ASR wells during one of the historical extended recovery periods, from late November 1991 to late February 1992. Approximately 268 million gallons of water were recovered from the ASR system during this three-month withdrawal period, and the TDS remained below the 500 mg/L TDS drinking water standard. Figure 11-8 shows the results of a more recent extended recovery period that occurred between January and May 1996. During this recovery period, a total of approximately 483 million gallons of water were recovered from the ASR system.
Figure 11-5 Historical operation of the ASR wells

Figure 11-6 Cumulative volume in storage
Figure 11-7 Depletion of storage and the TDS of water

According to Authority engineers, during this five-month extended recovery period, the TDS concentration of the recovered water appeared to have stabilized below approximately 500 mg/L, although data had some scatter. This stable water quality is a significant finding from the second extended recovery period. At some point, degeneration will occur when the transition zone is being pumped. Typically, TDS values increase throughout the recovery period until the targeted volume of water from the ASR well has been withdrawn.

The ASR system is designed to provide a six-month supply of water that meets drinking water quality standards. The six-month supply quantity was determined through an analysis of historical flow records of the Peace River. The longest historical period in which no diversion from the river was allowed was seven months during a very severe drought in 1985.

Testing performed at the PRRWSF’s ASR wells determined that each Suwanee Limestone well needs to have 350 million gallons of water stored to meet a six-month dry season. The Suwanee Limestone wells have a nominal capacity of 1.0 mgd. During a six-month recovery period, approximately 180 million gallons of water would be produced from each well. This means that approximately 50 percent of the water stored can be recovered at any one time to meet the available demands. Total recovery increases over time from 50 percent to nearly 100 percent of the water injected during successive storage and recovery cycles.
Aquifer reclamation is a technique where large quantities of higher quality waters are injected into a contaminated aquifer. A key application is the injection of fresh water into aquifer zones contaminated by saltwater. The fresh water may stabilize the salinity front or force it to retreat. This technique can be widely applied in coastal areas where saltwater intrusion has occurred.

When the aquifer head is reduced by development or drainage, saltwater continues to move and contaminate the aquifer formation. Because this movement is slow, proper injection procedures can push the isochlor line back toward the ocean by increasing the aquifer head. No drinking water wellfields should be downhill from the proposed injection area. Withdrawal downstream of the injection wells could frustrate efforts to increase aquifer head. The quality of the injected water could affect the aquifer, especially if the water is of lesser quality.

City of Hollywood Salinity Barrier Project

In 1994, the city of Hollywood, Fla., undertook a pilot program to inject effluent into the Biscayne Aquifer to retard saltwater migration. The city proposed injecting highly treated wastewater effluent into the production zone of the Biscayne Aquifer. The effluent would meet all the requirements for spray irrigation on publicly accessible lands. The injection would parallel the Atlantic Ocean in an area where saltwater intrusion has already contaminated the aquifer.

The effluent would be injected into the lower-half production zone of the Biscayne Aquifer (see Figure 11-9). The buoyancy of the fresh water will cause it to rise slowly toward the surface (see Figure 11-10). Combined with the hydraulic...
gradient of the Biscayne Aquifer, the plume will move toward the ocean (see Figure 11-11).

While some mixing will occur, the effluent will displace the saltwater and push the isochlor line toward the ocean (see Figure 11-12). If the program is continuously operated with a series of wells, this movement should provide a permanent barrier to saltwater migration.

Permitting is currently ongoing. The effluent water quality is better than the intruded saltwater, which should make the program feasible. Testing of the concept has been completed using potable water, with a transition to raw water, and ultimately the reclaimed water. The program's implementation would permit large amounts of effluent, most of which is discharged into the ocean (or potentially deep injection wells), to be injected along the coast as a salinity barrier. Existing fresh water sources should be protected.

West Coast Basin Barrier Project

Due to its growth, Southern California has experienced an increasing shortage of dependable water supplies. Approximately two thirds of the region's water supplies are imported from Northern California, the Colorado River, and the eastern slopes of the Sierra Nevada mountains. All three of these sources have become increasingly undependable. Owens Valley and Mono Basin supplies from the eastern slopes of the Sierra Nevada Mountains have been restricted by court decisions and agreements. This decreases the amount of water available to supply the West Coast Basin Barrier Project.

Decreasing dependable supplies of imported water, combined with the recent prolonged drought in Southern California have heightened public awareness of the need to conserve existing water supplies and develop new sources. This need is particularly acute within the Metropolitan Water District of Southern California (MWD) service area, consisting of 5,200 sq mi and 17 million people. Population growth and economic development have stretched existing water supplies to the limit. One alternative source of water that is receiving increased attention is water reclamation. An annual average of approximately 360 mgd is currently disposed of by the Hyperion Wastewater Treatment Facility through an outfall pipe extending 5 mi into the Santa Monica Bay. Water reclamation uses proven technologies to treat domestic wastewater to a level acceptable and safe for many applications. Because much of this wastewater is currently discharged to the ocean, water reclamation provides an opportunity to conserve and reuse a scarce natural resource.

The Los Angeles County Flood Control District constructed the West Coast Basin Barrier Project (WCBBP) in the 1950s and 1960s. Water imported by MWD was injected into the coastal reaches of local aquifers for mitigation of saltwater intrusion. The WCBBP consists of two sections of pressurized pipeline connecting about 150 injection wells. The injection wells are screened at selected depths ranging from 280 ft to 700 ft to allow water injection into three different aquifers. An average of approximately 20,000 ac-ft/yr of potable water has been injected by the WCBBP. However, more water is needed and the district is looking at using wastewater effluent to supplement the injection program.
Figure 11-9 Biscayne Aquifer reclamation water movement after injection

Figure 11-10 Biscayne Aquifer reclamation buoyancy movement after injection

Figure 11-11 Biscayne Aquifer reclamation injection well location
In May 1990, West Coast Basin Barrier District proposed reclaiming 62.5 mgd (70,000 ac-ft/yr) of Hyperion’s effluent at an advanced wastewater treatment facility located in El Segundo. This reclaimed water is now distributed for a wide variety of uses, including the West Coast Basin Barrier Project, to prevent seawater intrusion into local aquifers.

The major project elements of the West Coast Basin Barrier Project (WCBBP) include:

- Hyperion Treatment Facilities (430 mgd)
- Force Main Delivery Pipeline
- West Basin Water Reclamation Plant (WBWRP)
- Barrier Blend Facility
- Reclaimed Water Distribution System
- West Coast Basin Barrier Project

Secondary effluent is pumped from the City of Los Angeles Hyperion Treatment Facilities to the WBWRP through a 60-in.-diameter delivery pipeline. The WBWRP treats the secondary effluent to levels that meet the reclaimed water quality requirements of the different user groups. The reclaimed water is distributed to the individual users through an extensive distribution system. Before delivery to the WCBBP, the reclaimed water is blended with imported water at the barrier blend facility (see Figure 11-13).
The WBWRP will be located in El Segundo. The reclaimed water treatment process for the West Coast Barrier injection includes pre-decarbonation, lime and soda ash softening, pH adjustment, filtration, reverse osmosis, post-decarbonation, and disinfection (see Figure 11-14). The reclaimed water treatment rate of about 5 mgd for Phase I, and the ultimate rate of about 20 mgd were selected as the basis for hydraulic sizing of the Water Reclamation Plant (WRP).

A 30-in pipeline delivers the reclaimed water from the reclamation plant to the barrier blend facility located on El Segundo Boulevard. The facility will blend reclaimed water with the potable water.

The advanced wastewater treatment plant will provide approximately 5,600 ac-ft/yr on a continuous basis for injection into the WCBBP. This quantity represents an average of about 25 percent of the total reclaimed water injected into the WCBBP over the last 10 years. The percentage of reclaimed water injected into the WCBBP can vary depending on the following:

- Quantity of water required to maintain prescribed pressures in injection wells to prevent seawater intrusion
Reclaimed water will be provided on a continuous basis for injection into the barrier. Imported water will be blended with the reclaimed water in sufficient quantities to maintain injection barrier pressures. The quantities of imported water may vary seasonally depending on actual demands, availability of imported water, and pricing incentives provided by MWD. The blend of reclaimed water and imported water may vary from day to day and year to year depending on actual operating and water supply conditions.

MWD, in cooperation with other affected agencies and approval of regulatory agencies, has requested to conduct a demonstration project that would include injecting a higher percentage (up to 100 percent) of reclaimed water into the north section of WCBBP. This demonstration project would assess the operational effects on barrier operations, injection well performance, the fate and transport of reclaimed water, and effects on groundwater quality. Ultimately, 100 percent of the water injected into the WCBBP expected to be high-quality reclaimed water after the water is shown to be safe and is an acceptable alternative to imported water.

ARTIFICIAL AQUIFER CREATION AND AQUIFER RECHARGE

Artificial aquifers are created by injecting treatable water into an aquifer zone that is devoid of water. The injection can also displace lower quality water for retrieval down-gradient. Given the slow movement of water in aquifers, recharge may be able to supply small water quantities, or supplement existing water during times of aquifer stress. Where an aquifer has been depleted, the technique is viable.

Aquifer recharge, or artificial recharge, is similar. Water is injected at a point that allows the water to flow into a wellfield zone. The aquifer head is raised so that a driving head is created to push water (Figure 11-15). Although water can be produced from an aquifer in full turbulent flow, it cannot be recharged in turbulent flow conditions. Typically the recharge rate of a well is 20 to 50 percent of the flow or pumping rate.
In some instances, such as the Everglades Water Conservation Areas, the area is flooded to create an artificial aquifer head that increases percolation and aquifer storage. Downstream wellfields can take advantage of the higher water levels, creating an increase in total water supplies (Figure 11-16).

Aquifer recharge systems may also be applied to brackish water supply zones that tend to degrade over time. High-quality water is injected beneath the withdrawal zone, as shown in Figure 11-17, so that the upconing high-quality water is withdrawn, rather than saltwater. This use is important in reverse osmosis systems. As water quality degrades over time (higher TDS and chlorides), new membranes and more expensive pumps will likely be needed.
REFERENCES

California Code of Regulations Title 22 (1993), *State of California*, Division 4, Chapter 3.

Camp, Dresser and McKee (undated), *Wellfield Travel Time Model for Selected Wellfields in Dade, Broward and Palm Beach Counties*, CDM, Palm Beach, FL.

Index

f. indicates a figure; t. indicates a table.

Absorption, 173
Acidification, 132, 133, 143–144
Acoustic logging, 23
Activated carbon, 173
Adsorption, 173
Advanced oxidation, 169
Aeration, 167–168
Air strippers, 168
Airlift pumps, 114–115, 115f., 115t.
American Water Works Association
Instrumentation and Control (M2), 120
Standard A100-97, 52, 59, 60
and watershed protection programs, 37
Anisotropic aquifers, 5
Aquicludes, 5
Aquifer recharge, 196–197, 196f., 197f.
Aquifer reclamation, 191
Hollywood (Florida) salinity barrier project, 191–192, 193f., 194f.
West Coast Basin Barrier Project, 192–196, 194f., 195f.
Aquifer storage and recovery, 36, 184–186, 185f.
Collier County (Florida) project, 186, 186f.
Peace River (Florida) project, 187–190, 187f., 188f., 189f., 190f., 191f.
Aquifer test data
analysis, 78–79
collection schedule, 78
confined aquifers, 80
drawdown method, 81–86, 81f., 82f., 83f., 84f., 85f., 86f.
hypothetical test setup, 79–80, 79f.
leaky aquifers, 80
recovery method, 86–87
specific-capacity method, 87
and Theis nonequilibrium formula, 78, 83f.
type curves, 80
unconfined aquifers, 80–81
Aquifers
abandonment, 36
anisotropic, 5
artesian, 10
compared with confining beds, 7
confined, 10, 80
defined, 5
geologic configuration, 9f.
isotropic, 6
key parameters, 63
leaky, 80
storativity, 5
unconfined, 8, 9f., 80–81
Aquitards, 5
Arsenic, 159
Artesian flow, 8, 9f.
Artesian wells, 10
Artificial aquifer creation, 196
Artificial recharge, 36. See also Aquifer recharge
ASR. See Aquifer storage and recovery
ASTM Standard F-480, 52
Bacteria, 131–132, 154–155
Bail-down drilling, 48
BART tests, 132
Bentonite grout mixtures, 54
methods, 55
solids content and type, 54–55
Biofilm, 131–132
Biscayne Aquifer (Florida) reclamation project, 191–192, 193f., 194f.
Blended Chemical Heat Treatment, 133, 145
Blending, 34
Bored wells, 42
Borehole geophysical logging, 20–21
acoustic logging, 23
caliper logging, 21
electrical resistivity logging, 21–22, 22f.
fluid logs, 23–24
gamma logs, 22–23
gamma-gamma logs, 23
hydrophysical logging, 25
log suites, 24, 24f.
neutron logging, 23
spontaneous potential logging, 22
Cable tool surging, 133
Cable-tool drilling, 44–45
Caisson drilling, 47
Cake filters, 171–173
Calcium hypochlorite, 133, 139
California drilling, 46–47
Caliper logging, 21
Capacity, 99
Capillary fringe, 7, 8f.
Capillarity, 69f., 71–72, 71f., 71t., 73f.
Carbon dioxide, 152–153
Carbon dioxide injection, 133
Carbonic acid, 152
Carryover storage, 36
Cement grouting, 53
materials, 54
Centrifugal pumps, 107–109, 108f., 109t., 119
Centrifugal sand separators, 129–130, 130f.
Chloramines, 175
Chlorine, 168, 174–175
compounds, 168
Chlorine dioxide, 175
Chromium, 159
Clay, 8, 9f.
and land subsidence, 11
Clean Water Act, 37–38
Cluster wells, 26
Collier County (Florida) aquifer storage and recovery project, 186, 186f.
wellfield plugging case study, 138–140, 139f.
Cone of depression, 8, 9f.
Confining beds, 7
geologic configuration, 9f.
 Conjunctive use, 36
Contaminants and contamination, 14, 26, 33–34, 153. See also Treatment techniques
bacteria, 154–155
biological, 153–156
chemical, 156–164, 157f.
inorganic compounds, 156–159
minerals, 158–159
nitrates, 38, 156–157
nitrates, 156–157
nitrosamines, 160–161
organic chemicals, 160–163
pesticides, 160, 161t.
pharmaceutically active substances, 161–162, 163t.
protozoans, 154
radionuclides, 159
sources, 163–164, 163t., 164f.
synthetic, 38
total dissolved solids, 158
viruses, 155–156
volatile organic chemicals, 160, 168
Core transfers, 37
control, 173–174
Cryptosporidium, 154, 174
Darcy's law, 68–69
Deep-well turbine pumps, 109–110, 111f., 119–120
Dense nonaqueous phase liquids, 164
Design and construction records, 177–178
Desulfovibrio, 155
Diatomaceous earth filters, 171–173
Direct conjunctive use, 36
Disinfection, 174–175
D-NAPLS. See Dense nonaqueous phase liquids
Documentation, 28, 29f., 30f.
government agencies, 30
interest groups, 30
legal, 28
Down-the-hole drilling, 45
Drawdown, 8
in evaluating well performance, 124
Drawdown method, 81, 81f., 82f.
impermeable-barrier effect, 83–85, 84f., 85f.
and recharge effect of local stream, 85–86, 85f., 86f.
straight-line solution, 83, 84f.
type-curve solution, 81–82, 83f.
Drilled wells, 43
bail-down, 48
cable-tool, 44–45
caisson, 47
California, 46–47
down-the-hole, 45
dual-rotary, 46
jetting, 47–48
reverse-circulation rotary, 46
rotary, 45
sampling for formation recognition, 44
straightness and plumbness, 44
two-piece, 48
under-reamed, 48
well screen, 44
Driven wells, 42–43
Dual-rotary drilling, 46
Dug wells, 41–42
Dynamic head, 99. See also Total dynamic head
Effective pore space, 5
Electrical resistivity, 17–19, 18f.
logging, 21–22, 22f.
Elkhart (Indiana) wellfield plugging case study, 142–146
Entrance velocity, 59
in evaluating well performance, 123–124
Environmental Protection Agency (EPA). See US Environmental Protection Agency
Evaporation, 5. See also Evapotranspiration
Evapotranspiration, 2–3
defined, 5
potential, 6
rates (U.S.), 3f.
rates and rainfall (South Florida), 3f.
Exploration, 16–17
acoustic logging, 23
aquifer testing, 25
balanced program, 25
borehole geophysical logging, 20–25
caliper logging, 21
electrical resistivity, 17–19, 18f.
electrical resistivity logging, 21–22, 22f.
exploratory drilling, 25
fluid logs, 23–24
gamma logs, 22–23
gamma-gamma logs, 23
hydrophysical logging, 25
lithologic logging, 25
log suites, 24, 24f.
neutron logging, 23
seismic refraction and reflection, 19–20, 20f.
spontaneous potential logging, 22
surface geophysical methods, 17–20

Field coefficient of permeability. See Hydraulic conductivity
Field logistics, 27
land costs, 27–28
permits, 28
professional services, 28
Filtration, 171–173
Fluid logs, 23–24
Fluoridation, 175–176
Fricion head, 101t.–104t., 105t.–106t., 107

Gallionella, 155
Gamma logs, 22–23
Gamma-gamma logs, 23
Gases, 152–153
Giardia lamblia, 154
Granular activated carbon, 173
Granular filtration, 171
Gravel-wall wells, 50, 51f.
Gravity exploration methods, 20
Greensand, 170–171
Groundwater, 6. See also Treatment techniques, Wells
Atlantic Coastal Plain, 10
changes affecting evaluation, 16
contours, 29f., 30f.
defined, 6
evaluating for resource development, 13–14
and existing water rights, 15–16
field methods for locating suitable supplies, 16–25
gases, 152–153
hardness, 152, 169
increasing importance of, 33
and land use, 14–15
movement calculation, 68, 68f.
natural chemical constituents, 149, 150t.–151f.
pH, 149
and pollution control, 14
published reports, 15
and surface pollution, 14
temperature, 152
terms, 5–6
and topography, 10, 10f.
western U.S., 10
Groundwater Foundation, 39
Groundwater Guardian Program, 39
Grouting
bentonite, 54–55
cement, 53–54

Handbook for Groundwater and Wellhead Protection, 39
Hardness, 152, 169
Head, 66
defined, 67f.
dynamic, 99
friction, 101t.–104t., 105t.–106t., 107
net positive suction, 107
static, 99, 100f.
static discharge, 99, 100f.
static suction, 99, 100f.
total, 67
total dynamic, 118
velocity, 99, 100t.
Heat treatment, 133
Hollywood (Florida) salinity barrier project, 191–192, 193f., 194f.
Hydraulic conductivity, 6, 68–69, 69f.
in rock, 70, 70f.
Hydraulic gradient, 6, 67
calculating, 68, 68f.
defined, 67f.
Hydrochloric acid, 132, 133, 146
Hydrogen peroxide, 133
Hydrogen sulfide, 153
Hydrogeologic cross section, 29f.
Hydrogeological systems, 91
Hydrographs, 81, 81f.
Hydrologic cycle, 1–2, 2f.
defined
evapotranspiration, 2–3, 3f.
filtration, 4
precipitation, 4, 4f., 5f.
surface water, 4
Hydrophysical logging, 25
Hydroxyl radicals, 169
Hypochlorite, 133

Impulse pumps, 114
airlift pumps, 114–115, 115f., 115t.
jet pumps, 115–116, 116f., 119
Infiltration, 4
initial, 7
Injection well classes, 184
Intermediate zone, 7, 8f.
Ion exchange, 170–171
Iron, 128
Iron bacteria, 131
Isotropic aquifers, 6
Jet pumps, 115–116, 116f., 119
Jetting, 47–48
Laminar flow, 56–59, 69
Land costs, 27–28
Land subsidence, 11
estimating, 11
Land use, 14–15
Langelier Saturation Index, 174
Lead, 159
Lime–soda ash process, 170
L-NAPLS, 164
Log suites, 24, 24f.
LSI. See Langelier Saturation Index

MAG tests, 132
Magnetic exploration methods, 20
Management, 33–34
aquifer abandonment, 36
artificial recharge, 36
blending, 34
carryover storage, 36
and climate, 33, 35f.
conjunctive use, 36
core transfers, 37
direct conjunctive use, 36
local strategies for contaminated groundwater, 34–36, 35f.
nonpotable use, 35–36
option transfers, 37
political issues, 33, 34, 35f.
pump and treat strategy, 35
regional strategies, 36–37
replacement (in-lieu) conjunctive use, 36
seasonal storage, 36
spot transfers, 37
water marketing, 37
water transfers, 37
water wheeling, 37
well relocation, 36
Manganese, 128
Membrane filtration, 171, 172f.
Methane, 153
Microbiological fouling, 131–132, 138–141
Minerals, 158–159
Mixed-flow pumps, 110
Modeling, 15, 91
applications, 95–96
calibration, 94
converting conceptual models to mathematical models (prerequisite data), 92–94
limitations, 95
MODFLOW, 16
objectives, 91
published models, 96
steps, 92, 93f.
verification, 94
MODFLOW, 16
Monitoring wells, 25–26, 27f.

National Electrical Manufacturers Association, 120
National Geodetic Vertical Datum of 1929, 66
NDMA, 160–161
Net positive suction head, 107
Neutron logging, 23
Nitrates, 38, 156–157
Nitrites, 156–157
Nitrosamines, 160–161
Nonpotable use, 35–36
NPSH. See Net positive suction head
Option transfers, 37
Oxidation, 168–169
and filtration, 171
Oxygen, 153
Ozone, 169, 175
Particulate plugging of wells, 128
PASs. See Pharmaceutically active substances
Passivation, 174
Peace River (Florida) aquifer storage and recovery project, 187–190, 187f., 188f., 189f., 190f., 191f.
Permits, 28
Pesticides, 160, 161f.
pH, 149
Pharmaceutically active substances, 161–162, 163f.
Phosphate, 133, 144
Piezometric surface, 6
Plunger-type pumps. See Reciprocating pumps
Pollution control, 14. See also Contaminants and contamination
Porosity, 64–65
declared, 64f.
selected values, 65t., 66t.
Potassium permanganate, 168
Potential evapotranspiration, 6
Potentiometric surface, 10
Powdered activated carbon, 173
Precipitation, 4
average annual (U.S.), 5f.
intensities (U.S.), 4f.
Professional services, 28
Propeller pumps, 110
Protozoans, 154
Pseudomonas aeruginosa, 154–155
Pump and treat strategy, 35
Pumps and pumping, 99
aboveground installation, 120–121
aerifl pumps, 114–115, 115f., 115t.
alignment, 120, 121
breaking suction, 125–126
capacity, 99
centrifugal pumps, 107–109, 108f., 109t., 119
cHECK valves, 121–122
clogged intake, 127
deep-well installation, 121–122
deep-well turbine pumps, 109–110, 111f., 119–120
dynamic head, 99
efficiency, 116–117, 118
electric motor selection, 120
friction head, 101t.–104t., 105t.–106t., 107
horsepower, 118–119
impulse pumps, 114–116, 115f., 115t., 116f.
jet pumps, 115–116, 116f., 119
and lowered water table, 126–127, 126f.
measuring performance, 117–119
mixed-flow pumps, 110
net positive suction head, 107
INDEX 203
operating conditions, 116–117
operating problems, 125–127, 126f.
operational limits, 119–120
piping, 120–121
pressure-regulating valves, 116
propeller pumps, 110
reciprocating pumps, 113–114, 113f.
records, 178–179
rotary pumps, 110–112, 111f., 119
rotary-displacement pumps, 111f., 112
rotary-gear pumps, 112, 112f.
sand pumping, 129–130, 130f., 140–141
selection factors, 117–119
static discharge head, 99, 100f.
static head, 99, 100f.
static suction head, 99, 100f.
submersible pumps, 110, 119–120, 140
total dynamic head, 118
variable-speed drives, 116
velocity head, 99, 100f.

Radar, 20
Radial wells, 48–49, 49f.
yield, 90
Radionuclides, 159
Radon, 159
Recharge and storage programs. See Aquifer recharge, Aquifer reclamation, Aquifer storage and recovery, Artificial aquifer creation, Carryover storage, Seasonal storage
Recharge areas, 6–7
Reciprocating pumps, 113–114, 113f.
Record keeping, 177, 180–181
design and construction records, 177–178
differential, 180
monthly pumpage, 179
pump data, 178
specific capacity, 179–180
water levels, 179
water temperature, 179
well abandonment, 180
well acceptance and pumping tests, 178–179
well maintenance, 180
Recovery method, 86
type-curve solution, 86–87
Redevelopment, 132–133
Replacement (in-lieu) conjunctive use, 36
Reports on groundwater quality, 15
Reverse-circulation rotary drilling, 46
Rotary drilling, 45
Rotary pumps, 110–112, 111f., 119
Rotary-displacement pumps, 111f., 112
Rotary-gear pumps, 112, 112f.

Safe Drinking Water Act, 14, 25, 183
Source Water Assessment Programs, 39 and watershed protection programs, 37
Sand pumping, 129–130, 130f., 140–141
Saturated zone, 7, 8f., 9f.
Schlumberger array, 17–19, 18f.
Sea level, 66
Seasonal storage, 36
Seismic refraction and reflection, 19–20, 20f.
Sentinel wells, 25–26
Sequestering, 171
Soil zone, 7, 8f.
Sonar jetting, 134
Sorption, 173
Source Water Assessment Programs, 39
SP logging. See Spontaneous potential logging
Specific capacity, 60
in evaluating well performance, 123
records, 179–180
Specific discharge potential, 6
Specific retention, 65
defined, 66f.
selected values, 66f.
Specific yield, 65
defined, 66f.
selected values, 66f.
Specific-capacity method, 87
Spontaneous potential logging, 22
Spot transfers, 37
Static discharge head, 99, 100f.
Static head, 99, 100f.
Static suction head, 99, 100f.
Static water level, 8, 9f.
Storage coefficient, 76–77
defined, 76f.
field testing, 77
and water-level measurements, 77–78
Submersible pumps, 110, 119–120, 140
Subsidence, 11
estimating, 11
Summary Appraisals of the Nation’s Ground-Water Resources (1978–1982), 15
Surface water, 4
Surging, 132–133
SWAPs. See Source Water Assessment Programs
TDS. See Total dissolved solids
Temperature, 152
records, 179
Tensiometers, 72
Test data. See Aquifer test data
Theis nonequilibrium formula, 78, 83f.
Theoretical cube, 63, 64f.
Total dissolved solids, 158
Total dynamic head, 118
Transmissivity, 6, 8, 60, 73–74
calculating, 75–76, 75f.
defined, 74f.
field testing, 77
and water-level measurements, 77–78

Transpiration. See also Evapotranspiration defined, 6

Treatment techniques, 167. See also Contaminants and contamination
activated carbon, 173
adsorption and absorption, 173
advanced oxidation, 169
aeration, 167–168
cake filters, 171–173
chloramines, 175
chlorine and chlorine compounds, 168, 174–175
chlorine dioxide, 175
corrosion control, 168
diffused aeration, 168
disinfection, 174–175
filtration, 171–173
ion exchange, 170–171
lime–soda ash process, 170
membrane filtration, 171, 172f.
natural draft aeration, 167
oxidation, 168–169
oxidation and filtration, 171
ozone, 169, 175
packed-tower aeration, 168
potassium permanganate, 168
powdered activated carbon, 173
sequestering, 171
water softening, 170
Two-piece drilling, 48
Type curves, 80, 81–82, 83f., 86

Ultra Acid Base, 133
Under-reamed drilling, 48
Underground protection criteria and standards, 183–184
Uniformity coefficient, 50
Unsaturated flow, 69f., 71–72, 71f., 73f.
Unsaturated zone, 7, 8f., 9f.
Upconing, 14
US Environmental Protection Agency
Handbook for Groundwater and Wellhead Protection, 39
and watershed protection programs, 37
US Geological Survey
MODFLOW model, 16
reports, 15

Velocity head, 99, 100t.
Venice (Florida) wellfield plugging case study, 140–141, 142f.
Viruses, 155–156
Viscosity, 6
VOCs. See Volatile organic chemicals

Void space, 6
Volatile organic chemicals, 160, 168

Water marketing, 37
Water quality, 149. See also Contaminants and contamination, Watershed protection programs
gases, 152–153
hardness, 152, 169
monitoring, 25
monitoring wells, 25–26
multilevel sampling, 26
natural chemical constituents of groundwater, 149, 150t.–151t.
pH, 149
priority pollutants, 26
reports, 15
temperature, 152
Water rights, 15–16
Water softening, 170
Water transfers, 37
Water wheeling, 37
Water-level measurements, 77–78. See also Aquifer test data
Watershed protection programs, 37–39
Well casings, 51
installation, 52
materials, 52
special situations, 52–53
Well losses, 89
calculation, 89–90
Well screens, 44, 55–56
and design procedure, 59
and gravel walls, 56, 58f.
laminar flow, 56–59
materials, 59
and sanitary protection, 60–61
selection, 56
slot size, 56, 57f.
water entrance velocities, 59
Well-field design, 87
pumping rates, 87, 88f.
well-field interference, 88–89, 88t.
Wellhead protection areas, 38–39
Wells. See also Pumps and pumping abandonment, 135, 180
acidification, 132, 133, 143–144
Blended Chemical Heat Treatment, 133, 145
bored, 42
cable tool surging, 133
calcium hypochlorite treatment, 133, 139
carbon dioxide injection treatment, 133
cluster, 26
Collier County (Florida) wellfield plugging case study, 138–140, 139f.
corrosion, 128–129
design procedure, 59–60
disinfection, 61
drilled, 43–48
driven, 42–43
dug, 41–42
efficiency monitoring, 135, 136f.
Elkhart (Indiana) wellfield plugging case study, 142–146
environmental issues in treatment of fouling problems, 134
fouling treatment, 132–134
gravel-wall, 50, 51f.
heat treatment, 133
hydrochloric acid treatment, 132, 133, 146
hydrogen peroxide treatment, 133
hypochlorite treatment, 133
injection well classes, 184
microbiological fouling, 131–132, 138–141
monitoring, 25–26, 27f.
multilevel sampling, 26
multiple-completion monitoring wells, 26, 27f.
particulate plugging, 128
performance evaluation, 123–124
performance history, 137, 137f.
performance problems and causes, 123, 124–125, 146–147
phosphate treatment, 133, 144
physical deterioration, 127–129
plugging by iron and manganese, 128
production rate, 125
radial, 48–49, 49f., 90
records, 178–180
redevelopment, 132–133
rehabilitation economics, 135–137
relocation, 36
sand pumping, 129–130, 130f., 140–141
sanitary construction, 60–61
sentinel, 25–26
sonar jetting treatment, 134
surging, 132–133
types, 41
Ultra Acid Base treatment, 133
Venice (Florida) wellfield plugging case study, 140–141, 142f.
Wenner array, 17–18, 18f.
West Coast Basin Barrier Project, 192–196, 194f., 195f.
To order any of these manuals or other AWWA publications, call the Bookstore toll-free at 1-(800)-926-7337.